• Title/Summary/Keyword: trough region

Search Result 52, Processing Time 0.032 seconds

Characteristics of East Asian Cold Surges in the CMIP5 Climate Models (CMIP5 기후 모형에서 나타나는 동아시아 한파의 특징)

  • Park, Tae-Won;Heo, Jin-Woo;Jeong, Jee-Hoon;Ho, Chang-Hoi
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.199-211
    • /
    • 2017
  • The cold surges over East Asia can be grouped to two types of the wave-train and the blocking. Recently, the observational study proposed new dynamical index to objectively identify cold surge types. In this study, the dynamical index is applied to the simulations of 10 climate models, which participate in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Focusing on assessment of cold surge simulation, we discuss characteristic of the wave-train and blocking cold surges in the climate models. The wave-train index (WI) and the blocking index (BI) based on potential temperature anomalies at dynamical tropopause over the subarctic region, the northeast China, and the western North Pacific enable us to classify cold surges in the climate models into two types. The climate models well simulate the occurrence mechanism of the wave-train cold surges with vertical structure related to growing baroclinic wave. However, while the wave-train in the observation propagates in west-east direction across the Eurasia Continent, most of the models simulate the southeastward propagation of the wave-train originated from the Kara Sea. For the blocking cold surges, the general features in the climate models well follow those in the observation to show the dipole pattern of a barotropic high-latitude blocking and a baroclinic coastal trough, leading to the Arctic cold surges with the strong northerly wind originated from the Arctic Sea. In both of the observation and climate models, the blocking cold surges tend to be more intense and last longer compared to the wave-train type.

Migration of the Dokdo Cold Eddy in the East Sea (동해 독도 냉수성 소용돌이의 이동 특성)

  • KIM, JAEMIN;CHOI, BYOUNG-JU;LEE, SANG-HO;BYUN, DO-SEONG;KANG, BOONSOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.351-373
    • /
    • 2019
  • The cold eddies around the Ulleung Basin in the East Sea were identified from satellite altimeter sea level data using the Winding-Angle method from 1993 to 2015. Among the cold eddies, the Dokdo Cold Eddies (DCEs), which were formed at the first meandering trough of the East Korea Warm Current (EKWC) and were pinched off to the southwest from the eastward flow, were classified and their migration patterns were analyzed. The vertical structures of water temperature, salinity, and flow velocity near the DCE center were also examined using numerical simulation and observation data provided by the Hybrid Coordinate Ocean Model and the National Institute of Fisheries Science, respectively. A total of 112 DCEs were generated for 23 years. Of these, 39 DCEs migrated westward and arrived off the east coast of Korea. The average travel distance was 250.9 km, the average lifespan was 93 days, and the average travel speed was 3.5 cm/s. The other 73 DCEs had moved to the east or had hovered around the generated location until they disappeared. At 50-100 m depth under the DCE, water temperature and salinity (T < $5^{\circ}C$, S < 34.1) were lower than those of ambient water and isotherms made a dome shape. Current faster than 10 cm/s circulates counterclockwise from the surface to 300 m depth at 38 km away from the center of DCE. After the EKWC separates from the coast, it flows eastward and starts to meander near Ulleungdo. The first trough of the meander in the east of Ulleungdo is pushed deep into the southwest and forms a cold eddy (DCE), which is shed from the meander in the south of Ulleungdo. While a DCE moves westward, it circumvents the Ulleung Warm Eddy (UWE) clockwise and follows U shape path toward the east coast of Korea. When the DCE arrives near the coast, the EKWC separates from the coast at the south of DCE and circumvents the DCE. As the DCE near the coast weakens and extinguishes about 30 days later after the arrival, the EKWC flows northward along the coast recovering its original path. The DCE steadily transports heat and salt from the north to the south, which helps to form a cold water region in the southwest of the Ulleung Basin and brings positive vorticity to change the separation latitude and path of the EKWC. Some of the DCEs moving to the west were merged into a coastal cold eddy to form a wide cold water region in the west of Ulleung Basin and to create a elongated anticlockwise circulation, which separated the UWE in the north from the EKWC in the south.

Projected Climate Change Scenario over East Asia by a Regional Spectral Model (동아시아 지역에서의 지역 분광 모델을 이용하여 투영시킨 기후변화 시나리오)

  • Chang, Eun-Chul;Hong, Song-You
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.770-783
    • /
    • 2011
  • In this study, we performed a downscaling of an ECHAM5 simulated dataset for the current and future climate produced under the Special Report on Emission Scenarios A1B (SRES A1B) by utilizing the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). The current climate simulation was performed for the period 1980-2000 and the future climate run for the period 2040-2070 for the COordinated Regional climate Downscaling EXperiment (CORDEX)'s East Asia domain. The RSM is properly able to reproduce the climatological fields from the evaluation of the current climate simulation. Future climatological precipitation during the summer season is increased over the tropical Oceans, the maritime-continent, and Japan. In winter, on the other hand, precipitation is increased over the tropical Indian Ocean, the maritime-continents and the Western North Pacific, and decreased over the eastern tropical Indian Ocean. For the East Asia region few significant changes are detected in the precipitation climatological field. However, summer rainfall shows increasing trend after 2050 over the region. The future climate ground temperature shows a clear increasing trend in comparison with the current climate. In response to global warming, atmospheric warming is clearly detected, which strengthens the upper level trough.

Quantitative Analysis of Snow Particles Using a Multi-Angle Snowflake Camera in the Yeongdong Region (영동지역에서 눈결정 카메라를 활용한 눈결정의 정량 분석)

  • Kim, Su-Hyun;Ko, Dae-Hong;Seong, Dae-Kyung;Eun, Seung-Hee;Kim, Byung-Gon;Kim, Baek-Jo;Park, Chang-Geun;Cha, Ju-Wan
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.311-324
    • /
    • 2019
  • We employed a Multi-Angle Snowflake Camera (MASC) to quantitatively analyze snow particles at the ground level in the Yeongdong region of Korea. The MASC captures high-resolution photographs of hydrometeors from three angles and simultaneously measures fallspeed. Based on snowflake images of the several episodes in 2017 and 2018, we derived statistics of size, aspect ratio, orientation, complexity, and fallspeed of snow crystals, which generally showed similar characteristics to the previous studies in other regions of the world. Dominant snow crystal habits of January 22, 2018 generated by northerly were melted aggregates when 850 hPa temperature was about $-6{\sim}-8^{\circ}C$. Average fallspeed of snow crystals was $1.0m\;s^{-1}$ though its size gradually increased as temperature decreased. Another snowfall event (March 8, 2018) was driven by the baroclinic instability as accompanied with a deep trough. Snow crystal habits were largely rimed aggregates (complexity ~1.8) and melting particles of dark images. Meanwhile, in the extreme snowfall event whose snow rate was greater than $10cm\;hr^{-1}$ on January 20, 2017, main snow crystals appeared to be heavily rimed particles with relatively smaller size when convective clouds developed vertically up to 9 km in association with tropopause folding. MASC also could successfully measure a decrease in snow crystal size and an increase in riming degree after AgI seeding at Daegwallyeong on March 14, 2017.

Analysis of Tsunami Characteristics of Korea Southern Coast Using a Hypothetical Scenario (가상시나리오에 따른 남해안 지진해일 특성 연구)

  • Bumshick Shin;Dong-Seog Kim;Dong-Hwan Kim;Sang-Yeop Lee;Si-Bum Jo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.80-86
    • /
    • 2024
  • Large-scale earthquakes are occurring globally, especially in the South Asian crust, which is experiencing a state of tension in the aftermath of the 2011 East Japan Earthquake. Uncertainty and fear regarding the possibility of further seismic activity in the near future have been on the rise in the region. The National Disaster Management Research Institute has previously studied and analyzed the overflow characteristics of a tsunami and the rate of flood forecasting through tsunami numerical simulations of the East Sea of South Korea. However, there is currently a significant lack of research on the Southern Coast tsunamis compared to the East Coast. On the Southern Coast, the tidal difference is between 1~4 m, and the impact of the tides is hard to ignore. Therefore, it is necessary to analyze the impact of the tide propagation characteristics on the tsunami. Occurrence regions that may cradle tsunamis that affect the southern coast region are the Ryukyu Island and Nankai Trough, which are active seafloor fault zones. The Southern Coast has not experienced direct damage from tsunamis before, but since the possibility is always present, further research is required to prepare precautionary measures in the face of a potential event. Therefore, this study numerically simulated a hypothetical tsunami scenario that could impact the southern coast of South Korea. In addition, the tidal wave propagation characteristics that emerge at the shore due to tide and tsunami interactions will be analyzed. This study will be used to prepare for tsunamis that might occur on the southern coast through tsunami hazard and risk analysis.

Synoptic Analysis on the Trend of Northward Movement of Tropical Cyclone with Maximum Intensity (최대 강도 태풍의 북상 경향에 대한 종관분석)

  • Choi, Ki-Seon;Park, Ki-Jun;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.171-180
    • /
    • 2015
  • Regarding the tropical cyclone (TC) genesis frequency, TCs between 1999 and 2013 were generated more frequently in the northwest waters of the tropical- and subtropical western North Pacific than TCs between 1977 and 1998. TCs over the period from 1977-1998 showed a northward track trend generated mostly from the distant sea in east of the Philippines via the mainland of the Philippines and the South China Sea to the west toward Indochina or from the distant sea in east of the Philippines to the distance sea in east of Japan. TCS over the period from 1999-2013 showed a northward shift pattern to the mid-latitude region mostly in East Asia. Therefore, TCs over the period from 1999-2013 tended to move to much higher latitudes than TCs over the period from 1977-1998, which also resulted in the high possibility of maximum TC intensity occurred in higher latitudes during the former period than the latter period. In the difference of 500 hPa streamline between two periods, the anomalous anticyclonic circulations were strengthened in $30-50^{\circ}N$ whereas the anomalous monsoon trough was placed in north of the South China Sea, which was extended to the east up to $145^{\circ}E$. The mid-latitude in East Asia is affected by the anomalous southeasterlies due to the above anomalous anticyclonic circulations and anomalous monsoon trough. The anomalous southeasterlies play a role in anomalous steering flows that directed TCs to the mid-latitude regions in East Asia, which made the latitudes of the maximum intensities in TCs over the period from 1999 - 2013 further to the north than those in TCs over the period from 1977-1998.

Vertical Atmospheric Structure and Sensitivity Experiments of Precipitation Events Using Winter Intensive Observation Data in 2012 (2012년 겨울철 특별관측자료를 이용한 강수현상 시 대기 연직구조와 민감도 실험)

  • Lee, Sang-Min;Sim, Jae-Kwan;Hwang, Yoon-Jeong;Kim, Yeon-Hee;Ha, Jong-Chul;Lee, Yong-Hee;Chung, Kwan-Young
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.187-204
    • /
    • 2013
  • This study analyzed the synoptic distribution and vertical structure about four cases of precipitation occurrences using NCEP/NCAR reanalysis data and upper level data of winter intensive observation to be performed by National Institute of Meteorological Research at Bukgangneung, Incheon, Boseong during 63days from 4 JAN to 6 MAR in 2012, and Observing System Experiment (OSE) using 3DVAR-WRF system was conducted to examine the precipitation predictability of upper level data at western and southern coastal regions. The synoptic characteristics of selected precipitation occurrences were investigated as causes for 1) rainfall events with effect of moisture convergence owing to low pressure passing through south sea on 19 JAN, 2) snowfall events due to moisture inflowing from yellow sea with propagation of Siberian high pressure after low pressure passage over middle northern region on 31 JAN, 3) rainfall event with effect of weak pressure trough in west low and east high pressure system on 25 FEB, 4) rainfall event due to moisture inflow according to low pressures over Bohai bay and south eastern sea on 5 MAR. However, it is identified that vertical structure of atmosphere had different characteristics with heavy rainfall system in summer. Firstly, depth of convection was narrow due to absence of moisture convergence and strong ascending air current in middle layer. Secondly, warm air advection by veering wind with height only existed in low layer. Thirdly, unstable layer was limited in the narrow depth due to low surface temperature although it formed, and also values of instability indices were not high. Fourthly, total water vapor amounts containing into atmosphere was small due to low temperature distribution so that precipitable water vapor could be little amounts. As result of OSE conducting with upper level data of Incheon and Boseong station, 12 hours accumulated precipitation distributions of control experiment and experiments with additional upper level data were similar with ones of observation data at 610 stations. Although Equitable Threat Scores (ETS) were different according to cases and thresholds, it was verified positive influence of upper level data for precipitation predictability as resulting with high improvement rates of 33.3% in experiment with upper level data of Incheon (INC_EXP), 85.7% in experiment with upper level data of Boseong (BOS_EXP), and 142.9% in experiment with upper level data of both Incheon and Boseong (INC_BOS_EXP) about accumulated precipitation more than 5 mm / 12 hours on 31 January 2012.

A study on the Changes in form and spatial uses of Urban Hanok in Bukchon, Seoul (서울 북촌한옥의 변화양상에 관한 연구 - 북촌 가꾸기 사업에 따른 2002~2007 한옥 대수선 사례를 대상으로 -)

  • Song, In-Ho;Kim, Young-Soo;Cho, Eun-Joo
    • Journal of architectural history
    • /
    • v.18 no.2
    • /
    • pp.47-63
    • /
    • 2009
  • This study focused on changes in form and spatial uses of Urban Hanok in Bukchon, Seoul. There are 10 representative cases which have been renovated through the policy of 'Preservation & Regeneration of Bukchon' by Seoul metropolitan government and other experts. Changes in form and spatial uses of Urban Hanok in Buckon are as follows. First, Changes of scale. Trough removing extension parts, facade of renovated Hanoks are 'transformed' into recovering their identity. Using basements or lofts, intensive application of spaces is transformation which promotes the vitality of Hanoks. Second, changes of space organization. As Hanok changes its function from residence to commercial or cultural use, il a1so changes space character or reorganizes space organization. It is important that deciding function of Hanok has to adjust its scale and organization. Third, changes of construction performance. Through introducing new material and constructing method, performance of wall has been changed respecting its wooden structure and interior-exterior figure. However, technical studies must back it up not to destroy its value of eco-friendly architecture. Fourth, changes of facility systems, like floor heating system. They changes floor level of Hanok equally, and then sections of Hanok have became simple. Furthermore, inserting new facility space, such as boiler room, stand-up kitchen, bathroom and toilet, organization of space also changed. It is necessary that wise alternative proposal through the method of transformation or mutation must be presented. These four changes can be classification into method of 'transformation' and 'mutation'. Changes of scale are method of transformation and changes of space organization are method of mutation. Also, while changes of construction performance are mutation, changes of facility systems are transformation. Recently, as price of lots have been increased, a lot of Hanoks have been commercialized. Thc commercial energy threat 'the identity of Bukchon as residential area'. From now on, to operate 'identity' and 'vitality' complementary, it is necessary to make up for the preservation policy of Hanok and consolidate renovating standards of Hanok which correspond to character of particular region and building usage.

  • PDF

Sequence Stratigraphy of Late Quaternary Deposits in the Southeastern Continental Shelf, Korea (한국 남동 대륙붕 후 제4기 퇴적층의 시퀀스 층서)

  • 유동근;이치원;최진용;박수철;최진혁
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.369-379
    • /
    • 2003
  • Analysis of high-resolution seismic profiles and sediment data from the southeastern continental shelf of Korea reveals that the late Quaternary deposits consist of a set of lowstand (LST), transgressive (TST), and highstand systems tracts (HST) that corresponds to the sea-level change after the Last Glacial Maximum. LST (Unit I) above the sequence boundary consists of sandy mud or muddy sand deposited during the last glacial period and is confined to the shelf margin and trough region. TST (Unit II) between transgressive surface and maximum flooding surface consists of sandy sediments deposited during the postglacial transgression (15,000-6,000 yr BP). Although TST is widely distributed on the shelf, it is much thinner than LST and HST. On the basis of distribution pattern, TST can be divided into three sub-units: early TST (Unit IIa) on the shelf margin, middle TST (Unit IIb) on the mid-shelf, and late TST (Unit IIc) on the inner shelf, respectively. These are characterized by a backstepping depositional arrangement. HST(Unit III) above the maximum flooding surface is composed of the fine-grained sediments deposited during the last 6000 yrs when sea level was close to the present level and its distribution is restricted to the inner shelf along the coast.

Simulation of the Ocean Circulation Around Ulleungdo and Dokdo Using a Numerical Model of High-Resolution Nested Grid (초고해상도 둥지격자 수치모델을 이용한 울릉도-독도 해역 해양순환 모의)

  • Kim, Daehyuk;Shin, Hong-Ryeol;Choi, Min-bum;Choi, Young-Jin;Choi, Byoung-Ju;Seo, Gwang-Ho;Kwon, Seok-Jae;Kang, Boonsoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.587-601
    • /
    • 2020
  • The ocean circulation was simulated in the East Sea and Ulleungdo-Dokdo region using ROMS (Regional Ocean Modeling System) model. By adopting the East Sea 3 km model and the HYCOM 9 km data, Ulleungdo 1 km model and Ulleungdo-Dokdo 300 m model were constructed with one-way grid nesting method. During the model development, a correction method was proposed for the distortion of the open boundary data which may be caused by the bathymetry data difference between the mother and child models and the interpolation/extrapolation method. Using this model, a super-high resolution ocean circulation with a horizontal resolution of 300 m near the Ulleungdo and Dokdo region was simulated for year 2018. In spite of applying the same conditions except for the initial and boundary data, the numerical models result indicated significantly different characteristics in the study area. Therefore, these results were compared and verified by using the surface current data estimated by satellites altimeter data and temperature data from NIFS (National Institute of Fisheries Science). They suggest that in general, the improvement of the one-way grid nesting with the HYCOM data on RMSE, Mean Bias, Pattern correlation and Vector correlation is greater in 300 m model than in the 1 km model. However, the nesting results of using East Sea 3 km model showed that simulations of the 1 km model were better than 300 m model. The models better resolved distinct ridge/trough structures of isotherms in the vertical sections of water temperature when using the higher horizontal resolution. Furthermore, Karman vortex street was simulated in Ulleungdo-Dokdo 300 m model due to the terrain effect of th islands that was not shown in the Ulleungdo 1 km model.