DOI QR코드

DOI QR Code

Simulation of the Ocean Circulation Around Ulleungdo and Dokdo Using a Numerical Model of High-Resolution Nested Grid

초고해상도 둥지격자 수치모델을 이용한 울릉도-독도 해역 해양순환 모의

  • Kim, Daehyuk (Department of Atmospheric Science, Kongju National University) ;
  • Shin, Hong-Ryeol (Department of Atmospheric Science, Kongju National University) ;
  • Choi, Min-bum (Dept. of Marine Forecast, GeoSystem Research Corporation) ;
  • Choi, Young-Jin (Dept. of Marine Forecast, GeoSystem Research Corporation) ;
  • Choi, Byoung-Ju (Department of Oceanography, Chonnam National University) ;
  • Seo, Gwang-Ho (Ocean Research Division, Korea Hydrographic and Oceanographic Agency) ;
  • Kwon, Seok-Jae (Ocean Research Division, Korea Hydrographic and Oceanographic Agency) ;
  • Kang, Boonsoon (Ocean Research Division, Korea Hydrographic and Oceanographic Agency)
  • 김대혁 (공주대학교 대학원 대기과학과) ;
  • 신홍렬 (공주대학교 대기과학과) ;
  • 최민범 ((주)지오시스템리서치 해양예보사업부) ;
  • 최영진 ((주)지오시스템리서치 해양예보사업부) ;
  • 최병주 (전남대학교 해양학과) ;
  • 서광호 (국립해양조사원 해양과학조사연구실) ;
  • 권석재 (국립해양조사원 해양과학조사연구실) ;
  • 강분순 (국립해양조사원 해양과학조사연구실)
  • Received : 2020.11.17
  • Accepted : 2020.12.24
  • Published : 2020.12.31

Abstract

The ocean circulation was simulated in the East Sea and Ulleungdo-Dokdo region using ROMS (Regional Ocean Modeling System) model. By adopting the East Sea 3 km model and the HYCOM 9 km data, Ulleungdo 1 km model and Ulleungdo-Dokdo 300 m model were constructed with one-way grid nesting method. During the model development, a correction method was proposed for the distortion of the open boundary data which may be caused by the bathymetry data difference between the mother and child models and the interpolation/extrapolation method. Using this model, a super-high resolution ocean circulation with a horizontal resolution of 300 m near the Ulleungdo and Dokdo region was simulated for year 2018. In spite of applying the same conditions except for the initial and boundary data, the numerical models result indicated significantly different characteristics in the study area. Therefore, these results were compared and verified by using the surface current data estimated by satellites altimeter data and temperature data from NIFS (National Institute of Fisheries Science). They suggest that in general, the improvement of the one-way grid nesting with the HYCOM data on RMSE, Mean Bias, Pattern correlation and Vector correlation is greater in 300 m model than in the 1 km model. However, the nesting results of using East Sea 3 km model showed that simulations of the 1 km model were better than 300 m model. The models better resolved distinct ridge/trough structures of isotherms in the vertical sections of water temperature when using the higher horizontal resolution. Furthermore, Karman vortex street was simulated in Ulleungdo-Dokdo 300 m model due to the terrain effect of th islands that was not shown in the Ulleungdo 1 km model.

지역해양수치모델(ROMS)을 이용하여 동해 및 울릉도-독도 해역의 해양순환을 모의하였다. 동해 3 km 격자 수치모델과 HYCOM 9 km 격자 자료를 사용하여 울릉도 1 km 격자 수치모델, 울릉도-독도 300 m 격자 수치모델들을 서로 단방향 둥지격자화 기법으로 구축하였다. 그 과정에서 상위모델과는 다른 수심 자료 및 내·외삽 방법에 의해 나타날 수 있는 개방 경계자료의 왜곡에 대한 보정방법을 제시하였다. 구축한 시스템을 이용하여, 2018년 울릉도-독도 지역에서 수평해상도가 300 m인 초고해상도 해양순환 모의 결과를 산출하였다. 초고해상도 수치모델은 같은 조건임에도 불구하고 초기장 및 개방 경계자료에 따라 서로 다른 특징이 나타났다. 따라서 수치모델 결과를 인공위성 고도계 자료로 추정한 유속 자료 및 국립수산과학원의 수온 관측자료를 사용하여 비교 검증하였다. 검증결과 HYCOM 자료를 경계장으로 사용한 둥지격자기법 결과는 1 km 격자모델 보다 300 m 격자모델 결과에서 RMSE, Mean Bias, Pattern Correlation, Vector Correlation이 전반적으로 향상되었다. 그러나 동해 3 km 수치모델을 사용한 결과에서는 1 km 모델의 결과가 300 m 결과보다 우수하게 나타났다. 수온 수직단면도에서는 수평해상도가 고해상도일수록, 등온선의 골과 마루의 수직구조가 뚜렷해지는 경향이 나타났다. 또한 울릉도-독도 300 m 모델은 상위모델에서 재현되지 않았던 섬의 지형 효과에 따른 카르만 와열이 나타났다.

Keywords

Acknowledgement

본 연구는 국립해양조사원의 지원으로 수행된 "해양수치 모델개선 및 재분석장 생산기반 마련(GPRN: 11-1192136-000551-01)" 연구결과 중 일부임을 밝히며, 연구비 지원에 감사드립니다.

References

  1. An, H., Sim, K.S. and Shin, H.-R. (1994). On the warm eddies in the southwestern part of the East Sea (the Japan Sea). J. Korean Soc. Oceanogr., 29(2), 152-163.
  2. Arakawa, A. and Lamb, V.R. (1977). Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17(1977), 174-267.
  3. Baek, S.-H. and Kim, Y.-B. (2018). Influences of coastal upwelling and time lag on primary production in offshore waters of Ulleungdo-Dokdo during Spring 2016. Korean J. Environ. Biol., 36(2), 156-164 (in Korean). https://doi.org/10.11626/KJEB.2018.36.2.156
  4. Chang, K.-I., Kim, Y.-B., Suk, M.-S. and Byun, S.-K. (2002). Hydrography around Dokdo. Ocean Polar Res., 24, 369-389. https://doi.org/10.4217/OPR.2002.24.4.369
  5. Chang, Y.S. (2015). Intercomparison of the global ocean reanalysis data. J. Korean Soc. Oceanogr., 20, 102-118 (in Korean).
  6. Cho, Y.-K. and Kim. K. (1996). Seasonal variation of the East Korea Warm Current and its relation with the cold water. La mer, 34, 172-182.
  7. Choi, B.-J., Cho, S.H., Jung, H.S., Lee, S.-H., Byun, D.-S. and Kwon, K. (2018). Interannual variation of surface circulation in the Japan/East Sea due to external forcings and intrinsic variability. Ocean Sci. J., 53(1), 1-16. https://doi.org/10.1007/s12601-017-0058-8
  8. Egbert, G.D. and Erofeeva, S.Y. (2002). Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean Tech., 19, 183-204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  9. Fairall, C.W., Bradley, E.F., Rogers, D.P., Edson, J.B. and Young, G.S. (1996). Bulk parameterization of air-sea fluxes in tropical global atmosphere coupled-ocean atmosphere response experiment. Journal of Geophysical Research, 101, 3747-3767. https://doi.org/10.1029/95JC03205
  10. Gordon, A.L., Giulivi, C.F., Lee, C.M., Furey, H.H., Bower, A. and Talley, L. (2002). Japan/East Sea Intra-thermocline eddies. J. Phys. Oceanogra., 32, 1960-1974. https://doi.org/10.1175/1520-0485(2002)032<1960:JESIE>2.0.CO;2
  11. Hyun, J.-H., Kim, D., Shin, C.-W., Noh, J.-H., Yang, E.-J., Mok, J.-S., Kim, S.-H., Kim, H.-C. and Yoo, S. (2009). Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung basin, East Sea. Aquat. Microb. Ecol., 54, 45-54. https://doi.org/10.3354/ame01280
  12. Kang, H.-E. and Kang, Y.Q. (1990). Spatio-Temporal characteristics of the Ulleung Warm Lens. Bull. Korean Fish. Soc., 23(5), 407-415.
  13. Kawabe, M. (1982). Branching of the Tsushima Current in the Japan Sea. Part I: Data analysis. J. Oceanogr. Soc. Japan, 38, 95-107. https://doi.org/10.1007/BF02110295
  14. Kim, A.-R., Youn, S.-H., Chung, M.-H., Yoon, S.-C. and Moon, C.-H. (2014). The influences of coastal upwelling on hytoplankton community in the Southern part of East Sea, Korea. J. Korean Soc. Oceanogr., 19, 287-301 (in Korean).
  15. Kim, D., Shin, H.-R., Kim, C.-H. and Hirose, N. (2020). Characteristics of the East Sea (Japan Sea) circulation depending on surface heat flux and its effect on branching of the Tsushima Warm Current. Cont. Shelf Res., 192, 104025. https://doi.org/10.1016/j.csr.2019.104025
  16. Kim, J., Choi, B.-J., Lee, S.-H., Byun, D.-S. and Kang, B. (2019). Migration of the Dokdo Cold Eddy in the East Sea. J. Korean Soc. Oceanogr., 24(2), 351-373 (in Korean).
  17. Kim, J.H., Eom, H.-M., Choi, J.-K., Lee, S.-M., Kim, Y.-H. and Chang, P.-H. (2015). Impacts of OSTIA sea surface temperature in regional ocean data assimilation system. J. Korean Soc. Oceanogr., 20(1), 1-15 (in Korean).
  18. Kim, Y.H., Choi, B.-J., Lee, J.-S., Byun, D.-S., Kang, K, Kim, Y.-G. and Cho, Y.-K. (2013). Korean ocean forecasting system: Present and Future. J. Korean Soc. Oceanogr., 18(2), 89-103 (in Korean).
  19. Large, W.G., McWilliams, J.C. and Doney S.C. (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophys., 32, 363-404. https://doi.org/10.1029/94rg01872
  20. Lee, D.-K. and Niiler, P. (2005). The energetic surface circulation patterns of the Japan/East Sea. Deep-Sea Res. II, 52, 1547-1563. https://doi.org/10.1016/j.dsr2.2003.08.008
  21. Lee, D.-K. and Niiler, P. (2010). Eddies in the southwestern East/Japan Sea. Deep Sea Res. Part I, 57, 1233-1242. https://doi.org/10.1016/j.dsr.2010.06.002
  22. Lee, J.-H., Kim, T.-H. and Moon, J.-H. (2016). Application of ROMS-NPZD coupled model for seasonal variability of nutrient and chlorophyll at surface layer in the Northwestern Pacific. Ocean and Polar Res., 38(1), 1-19 (in Korean). https://doi.org/10.4217/OPR.2016.38.1.001
  23. Mitchell, D.A., Watts, D.R., Wimbush, M., Teague, W.J., Tracey, K.L., Book, J.W., Chang, K.-I., Suk, M.-S. and Yoon, J.-H. (2005a). Upper circulation patterns in the Ulleung Basin. Deep Sea Res. Part II, 52, 1617-1638. https://doi.org/10.1016/j.dsr2.2003.09.005
  24. Mitchell, D.A., Teague, W.J., Wimbush, M., Watts, D.R. and Sutyrin G.G. (2005b). The Dok Cold Eddy. J. Phys. Oceanogr., 35, 273-288. https://doi.org/10.1175/JPO-2684.1
  25. Morimoto, A., Yanagi, T. and Kaneko, A. (2000). Eddy field in the Japan Sea derived from satellite altimetric data. J. Oceanogr., 56, 449-462. https://doi.org/10.1023/A:1011184523983
  26. Nof, D. (2001). China's development could lead to bottom water formation in the Japan/East Sea. Bull. Am. Meteorol. Soc., 82(4), 609-618. https://doi.org/10.1175/1520-0477(2001)082<0609:cdcltb>2.3.co;2
  27. Seo, S.-N. (2008). Digital 30sec gridded bathymetric data of Korea marginal seas-KorBathy30s. J. Korean Soc. Coastal and Ocean Engin., 20(1), 110-120 (in Korean).
  28. Shchepetkin, A.F. and McWilliams, J.C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002
  29. Shchepetkin, A.F. and McWilliams, J.C. (2009). Correction and commentary for "Ocean forecasting in Terrain-Following coordinates: Formulation and skill assessment of the regional ocean modeling system" by Haidvogel et al., J. Comput. Phys., 227, pp. 3595-3624. J. Comput. Phys., 228(24), 8985-9000.
  30. Shin, H.-R., Shin, C.-W., Kim, C., Byun, C.-K. and Hwang, S.C. (2005). Movement and structural variation of warm eddy WE92 for three years in the Western East/Japan Sea. Deep Sea Res. II, 52, 1742-1762. https://doi.org/10.1016/j.dsr2.2004.10.004
  31. Shin, H.-R., Kim, I., Kim, D., Kim, C.-H., Kang, B. and Lee, E. (2019). Physical characteristics and classification of the Ulleung Warm Eddy in the East Sea (Japan Sea). J. Korean Soc. Oceanogr., 24(2), 298-317 (in Korean).
  32. Song, Y. and Haidvogel, D. (1994). A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115(1), 228-244. https://doi.org/10.1006/jcph.1994.1189
  33. Song, Y.T. and Wright, D.G. (1998). A general pressure gradient formulation for ocean models, Part II: Energy, momentum and bottom torque consistency, Monthly Weather Review, 126(12), 3213-3230. https://doi.org/10.1175/1520-0493(1998)126<3213:AGPGFF>2.0.CO;2
  34. Stephens, M.A. (1979). Vector Correlation. Biometrika, 66(1), 41-48. https://doi.org/10.1093/biomet/66.1.41
  35. Suda, K. and Hidaka, K. (1932). The results of simultaneous oceanographical investigation in the Japan sea in summer, 1929. J. Oceanogr., 3, 291-375.
  36. Uda, M. (1934). The results of simultaneous oceanographical investigations in the Japan Sea and its adjacent waters in May and June, 1932. J. Imp. Fish. Exp. Stn., 5, 57-190.
  37. Wyrtki, K., Magaard, L. and Hager, J. (1976). Eddy energy in the oceans. Journal of Geophys. Res., 81, 2641-2646. https://doi.org/10.1029/JC081i015p02641
  38. Yoon, J.-H. (1982). Numerical experiment on the circulation in the Japan Sea, Part II: Influence of seasonal variations in atmospheric conditions on the Tsushima Current. J. Oceanogr. Soc. Japan, 38, 81-94. https://doi.org/10.1007/BF02110294