• Title/Summary/Keyword: tropical cyclones

Search Result 85, Processing Time 0.029 seconds

Roof tile frangibility and puncture of metal window shutters

  • Laboy-Rodriguez, Sylvia T.;Smith, Daniel;Gurley, Kurtis R.;Masters, Forrest J.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.185-202
    • /
    • 2013
  • The goal of this study was to investigate the vulnerability of roof tile systems and metal shutters to roof tile debris. Three phases addressed the performance of tile roof systems and metal shutters impacted by roof tile debris. The first phase experimentally evaluated the tile fragment size and quantity generated by a tile striking a tile roof system. The second phase experimentally quantified the puncture vulnerability of common metal panel shutter systems as a function of tile fragment impact speed. The third phase provided context for interpretation of the experimental results through the use of a tile trajectory model. The results provide supporting evidence that while metal panel window shutters provide significant protection against a prevalent form of windborne debris, these systems are vulnerable to tile fragment puncture in design level tropical cyclones. These findings correlate with field observations made after Hurricane Charley (2004).

Assessing synoptic wind hazard in Australia utilising climate-simulated wind speeds

  • Sanabria, L.A.;Cechet, R.P.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.131-145
    • /
    • 2012
  • Severe wind is one of the major natural hazards in Australia. The component contributors to economic loss in Australia with regards to severe wind are tropical cyclones, thunderstorms and subtropical (synoptic) storms. Geoscience Australia's Risk and Impact Analysis Group (RIAG) is developing mathematical models to study a number of natural hazards including wind hazard. This paper discusses wind hazard under current and future climate conditions using RIAG's synoptic wind hazard model. This model can be used in non-cyclonic regions of Australia (Region A in the Australian-New Zealand Wind Loading Standard; AS/NZS 1170.2:2011) where the wind hazard is dominated by synoptic and thunderstorm gust winds.

Study on hydrologic variability of multipurpose dam in korea Peninsula based on tropical cyclones information (태풍 정보를 고려한 한반도 다목적댐 유역의 수문 변동특성분석)

  • Kang, Ho Yeong;Mok, Ji Yoon;Hwang, Sung Hwan;Moon, Young Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.167-167
    • /
    • 2017
  • 유역의 수문학적 변동 특성을 이해하는 것은 미리 자연 재해를 예상하고, 홍수를 통제하여 인간의 삶에 필요한 수자원을 안정적으로 공급할 수 있다. 이러한 특성에 대한 면밀한 조사는 하천 생태계의 구조와 기능을 조절할 수 있기 때문에 반드시 필요하다. 따라서 한반도의 대표적인 다목적 댐 유역에 초점을 맞추고, 일 유입량 자료와 한반도 태풍 영향 도메인을 적용하여 태풍의 영향을 고려하여 정량적인 수문학적 변화 특성을 분석하였다. 또한 남한 총 면적의 약 30%를 차지하고 있으며, 남한 총 수자원의 35%를 공급하고 있는 한강 유역의 대표적인 다목적 댐 유역인 소양강 댐을 대상으로 한반도에 영향을 미치는 태풍과 태풍의 발생에 따른 유출특성변화를 분석하였다. 태풍영향 도메인을 적용하여 태풍유량을 정량화하였으며, 태풍통계 자료와 지역 수문변화 지표의 변화와 상관분석을 통하여 기후변화의 적응과 대책수립에 기초자료를 제공하고자 한다.

  • PDF

Characteristics of Tropical Cyclogenesis over the Western North Pacific in 2007 (2007년 북서태평양에서의 열대저기압 발생 특징)

  • Choi, Ki-Seon;Kim, Baek-Jo;Lee, Seong-Lo;Kim, Ho-Kyung;Park, Jong-Kil;Lee, Ji-Sun
    • Journal of Environmental Science International
    • /
    • v.18 no.5
    • /
    • pp.539-550
    • /
    • 2009
  • This study found that tropical cyclones (TCs) formed for fall in 2007 over the western North Pacific were distributed in high-latitudes comparing to 56-year (1951-2006) climatological mean. The frequency and latitude of TC genesis became higher than 56-year climatological mean from September onward in 2007 and all the TCs that formed to the north of 20$^{\circ}$N was also distributed after September in 2007. These characteristics of TC genesis for fall in 2007 could be confirmed through analyzing various variables, such as a large-scale atmospheric circulation, outgoing longwave radiation (OLR), vertical zonal wind shear, and sea surface temperature (SST). On the other hand, a frequency of the TC that occurred to the north of 200N showed a clear interdecadal variation and its decreasing trend was distinctive in recent years. Its intensity was also weaker that TCs that did to the south of 20$^{\circ}$N. However, a latitude of TC genesis showed an increasing trend until recent years, whose variation was consistent with trend that through a SST analysis, warm SST went north in recent years.

Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds

  • Dai, Kaoshan;Sheng, Chao;Zhao, Zhi;Yi, Zhengxiang;Camara, Alfredo;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.79-100
    • /
    • 2017
  • The use of wind energy resources is developing rapidly in recent decades. There is an increasing number of wind farms in high wind-velocity areas such as the Pacific Rim regions. Wind turbine towers are vulnerable to tropical cyclones and tower failures have been reported in an increasing number in these regions. Existing post-disaster failure case studies were mostly performed through forensic investigations and there are few numerical studies that address the collapse mode simulation of wind turbine towers under strong wind loads. In this paper, the wind-induced failure analysis of a conventional 65 m hub high 1.5-MW wind turbine was carried out by means of nonlinear response time-history analyses in a detailed finite element model of the structure. The wind loading was generated based on the wind field parameters adapted from the cyclone boundary layer flow. The analysis results indicate that this particular tower fails due to the formation of a full-section plastic hinge at locations that are consistent with those reported from field investigations, which suggests the validity of the proposed numerical analysis in the assessment of the performance of wind-farms under cyclonic winds. Furthermore, the numerical simulation allows to distinguish different failure stages before the dynamic collapse occurs in the proposed wind turbine tower, opening the door to future research on the control of these intermediate collapse phases.

Solar Influence on Tropical Cyclone in Western North Pacific Ocean

  • Kim, Jung-Hee;Kim, Ki-Beom;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.257-270
    • /
    • 2017
  • Solar activity is known to be linked to changes in the Earth's weather and climate. Nonetheless, for other types of extreme weather, such as tropical cyclones (TCs), the available evidence is less conclusive. In this study the modulation of TC genesis over the western North Pacific by the solar activity is investigated, in comparison with a large-scale environmental parameter, i.e., El-$Ni{\tilde{n}}o$-Southern Oscillation (ENSO). For this purpose, we have obtained the best track data for TCs in the western North Pacific from 1977 to 2016, spanning from the solar cycle 21 to the solar cycle 24. We have confirmed that in the El-$Ni{\tilde{n}}o$ periods TCs tend to form in the southeast, reach its maximum strength in the southeast, and end its life as TSs in the northeast, compared with the La-$Ni{\tilde{n}}o$ periods. TCs occurring in the El-$Ni{\tilde{n}}o$ periods are found to last longer compared with the La-$Ni{\tilde{n}}o$ periods. Furthermore, TCs occurring in the El-$Ni{\tilde{n}}o$ periods have a lower central pressure at their maximum strength than those occurring in the La-$Ni{\tilde{n}}o$ periods. We have found that TCs occurring in the solar maximum periods resemble those in the El-$Ni{\tilde{n}}o$ periods in their properties. We have also found that TCs occurring in the solar descending periods somehow resemble those in the El-$Ni{\tilde{n}}o$ periods in their properties. To make sure that it is not due to the ENSO effect, we have excluded TCs both in the El-$Ni{\tilde{n}}o$ periods and in the La-$Ni{\tilde{n}}o$ periods from the data set and repeated the analysis. In addition to this test, we have also reiterated our analysis twice with TCs whose maximum sustained winds speed exceeds 17 m/s, instead of 33 m/s, as well as TCs designated as a typhoon, which ends up with the same conclusions.

Synoptic Characteristics of the Main Path Types of 850hPa Surface Water Vapor Flux for Heavy Changma Rainfall in the South Coastal Region of Korea (한국 남해안의 장마철 호우 시 850hPa 등압면 수증기 수송 주 경로 유형의 종관 특성)

  • Park, Byong-Ik
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.2
    • /
    • pp.150-166
    • /
    • 2011
  • This study aims to investigate the differences of synoptic characteristics and frontal structures over East Asia according to the main path types of water vapor flux (WVF) of 850hPa surface in cases of the heavy rainfall in the south coastal region of Korea during the Changma season (June and July), In the cases of type A in which the main path of WVF is running from the South china Sea via the South china to the South Sea of Korea, the North Pacific subtropical anticyclone (NPSA) expands to the South China and strong cyclones appear in the Yellow Sea. In cases of type B and C in those the main paths of WVF are running from the South China Sea via the Western Pacific Ocean near Taiwan to the South Sea and from the Western North Pacific Ocean to the South Sea respectively, tropical cyclones appear frequently near Taiwan and the NPSA shifts northward. In the case of type D in which the main path of WVF appear only near the South Sea, strong cyclones appear near the Yellow Sea. In all cases upper jets are intensified in the northern part of the heavy rainfall region and low-level jets appear near the main paths of WVF. In the view of frontal structure, deep active-type of the Changma front is identified in most cases of all types. In this point the Changma season is different from the Baiu season in Western Japan where many cases of shallow active-type of the Baiu front appear.

  • PDF

Typhoon Simulation with a Parameterized Sea Surface Cooling (모수화된 해면 냉각을 활용한 태풍 모의 실험)

  • Lee, Duho;Kwon, H. Joe;Won, Seong-Hee;Park, Seon Ki
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.97-110
    • /
    • 2006
  • This study investigates the response of a typhoon model to the change of the sea surface temperature (SST) throughout the model integration. The SST change is parameterized as a formulae of which the magnitude is given as a function of not only the intensity and the size but the moving speed of tropical cyclone. The formulae is constructed by referring to many previous observational and numerical studies on the SST cooling with the passage of tropical cyclones. Since the parameterized cooling formulae is based on the mathematical expression, the resemblance between the prescribed SST cooling and the observed one during the period of the numerical experiment is not complete nor satisfactory. The agreements between the prescribed and the observed SST even over the swath of the typhoon passage differ from case to case. Numerical experiments are undertaken with and without prescribing the SST cooling. The results with the SST cooling do not show clear evidence in improving the track prediction compared to those of the without-experiments. SST cooling in the model shows its swath along the incomplete simulated track so that the magnitude and the distribution of the sea surface cooling does not resemble completely with the observed one. However, we have observed a little improvement in the intensity prediction in terms of the central pressure of the tropical cyclone in some cases. In case where the model without the SST treatment is not able to yield a correct prediction of the filling of the tropical cyclone especially in the decaying stage, the pulling effect given by the SST cooling alleviates the over-deepening of the model so that the central pressure approaches toward the observed value. However, the opposite case when the SST treatment makes the prediction worse may also be possible. In general when the sea surface temperature is reduced, the amount of the sensible and the latent heat from the ocean surface become also reduced, which results in the weakening of the storms comparing to the constant SST case. It turns out to be the case also in our experiments. The weakening is realized in the central pressure, maximum wind, horizontal temperature gradient, etc.

Characteristics of Variation of Sea Surface Temperature in the East Sea with the Passage of Typhoons (태풍의 이동경로에 따른 동해연안 수온변화 특성)

  • Park, Myung-Hee;Lee, Joon-Soo;Suh, Young-Sang;Kim, Hae-Dong;Bae, Hun-Kyun
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1657-1671
    • /
    • 2015
  • In this study, the wind direction and the wind speed of the nearest temperature observations point of the National Weather Service was analyzed in order to investigate the rapid rise and drop of water temperature in the East Coast appeared after passing of the 2015 typhoon No. 9 and 11. Then the figures were simulated and analyzed using the WRF(weather research and forecast) model to investigate in more detailed path of the typhoon as well as the changes in the wind field. The results were as follows. A sudden drop of water temperature was confirmed due to upwelling on the East coast when ninth typhoon Chanhom is transformed from tropical cyclones into extra tropical cyclone, then kept moving eastwards from Pyongyang forming a strong southerly wind after 13th and this phenomenon lasted for two days. The high SST(sea surface temperature) is confirmed due to a strong northerly wind by 11th typhoon Nangka. This strong wind directly affected the east coast for three days causing the Ekman effect which transported high offshore surface waters to the coast. The downwelling occurred causing an accumulation of high temperature surface water. As a results, the SST of 15m and 25m rose to that of 5m.

Relationship between rainfall in Korea and Antarctic Oscillation in June (6월의 남극진동이 한국의 6월 강우량에 미치는 영향)

  • Choi, Ki Seon;Kim, Baek Jo;Lee, Jong Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.136-147
    • /
    • 2013
  • This study examined the effect of the Antarctic Oscillation (AAO) in June on the June rainfall in Korea by using a correlational statistical analysis. Results showed that there is a highly positive correlation between the two variables. In other words, the June rainfall in Korea is influenced by the Mascarene High and Australian High that are strengthened in the Southern Hemisphere, which is a typical positive AAO pattern. When these two anomalous pressure systems strengthen, the cold cross-equatorial flows in the direction from the region around Australia to the equator are intensified, which in turn, force a western North Pacific subtropical high (WNPSH) to develop northward. This pressure development eventually drives the rain belt to head north. As a result, the Changma begins early in the positive AAO phase and the June rainfall increases in Korea. In addition, a WNPSH that develops more northward increases the landfall (or affecting) frequency of tropical cyclones in Korea, which plays an important role in increasing the June rainfall.