Browse > Article
http://dx.doi.org/10.5140/JASS.2017.34.4.257

Solar Influence on Tropical Cyclone in Western North Pacific Ocean  

Kim, Jung-Hee (Department Astronomy and Atmospheric Sciences, Kyungpook National University)
Kim, Ki-Beom (Department Astronomy and Atmospheric Sciences, Kyungpook National University)
Chang, Heon-Young (Department Astronomy and Atmospheric Sciences, Kyungpook National University)
Publication Information
Journal of Astronomy and Space Sciences / v.34, no.4, 2017 , pp. 257-270 More about this Journal
Abstract
Solar activity is known to be linked to changes in the Earth's weather and climate. Nonetheless, for other types of extreme weather, such as tropical cyclones (TCs), the available evidence is less conclusive. In this study the modulation of TC genesis over the western North Pacific by the solar activity is investigated, in comparison with a large-scale environmental parameter, i.e., El-$Ni{\tilde{n}}o$-Southern Oscillation (ENSO). For this purpose, we have obtained the best track data for TCs in the western North Pacific from 1977 to 2016, spanning from the solar cycle 21 to the solar cycle 24. We have confirmed that in the El-$Ni{\tilde{n}}o$ periods TCs tend to form in the southeast, reach its maximum strength in the southeast, and end its life as TSs in the northeast, compared with the La-$Ni{\tilde{n}}o$ periods. TCs occurring in the El-$Ni{\tilde{n}}o$ periods are found to last longer compared with the La-$Ni{\tilde{n}}o$ periods. Furthermore, TCs occurring in the El-$Ni{\tilde{n}}o$ periods have a lower central pressure at their maximum strength than those occurring in the La-$Ni{\tilde{n}}o$ periods. We have found that TCs occurring in the solar maximum periods resemble those in the El-$Ni{\tilde{n}}o$ periods in their properties. We have also found that TCs occurring in the solar descending periods somehow resemble those in the El-$Ni{\tilde{n}}o$ periods in their properties. To make sure that it is not due to the ENSO effect, we have excluded TCs both in the El-$Ni{\tilde{n}}o$ periods and in the La-$Ni{\tilde{n}}o$ periods from the data set and repeated the analysis. In addition to this test, we have also reiterated our analysis twice with TCs whose maximum sustained winds speed exceeds 17 m/s, instead of 33 m/s, as well as TCs designated as a typhoon, which ends up with the same conclusions.
Keywords
solar activity; tropical cyclone; data analysis;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 McBride JL, Zehr R, Observational analysis of tropical cyclone formation. Part II: comparison of non-developing versus developing systems, J. Atmos. Sci. 38, 1132-1151 (1981). https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2   DOI
2 Meehl GA, Arblaster JM, Branstator G, van Loon H, Coupled air-sea response mechanism to solar forcing in the Pacific region, J. Clim. 21, 2883-2897 (2008). https://doi.org/10.1175/2007JCLI1776.1   DOI
3 Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H, Amplifying the Pacific climate system response to a small 11 year solar cycle forcing, Science 325, 1114-1118 (2009). https://doi.org/10.1126/science.1172872   DOI
4 Mironova IA, Usoskin IG, Possible effect of extreme solar energetic particle events of September-October 1989 on polar stratospheric aerosols: a case study, Atmos. Chem. Phys. 13, 8543-8550 (2013). https://doi.org/10.5194/acp-13-8543-2013   DOI
5 Mironova IA, Usoskin IG, Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results, Environ. Res. Lett. 9, 015002 (2014). https://doi.org/10.1088/1748-9326/9/1/015002   DOI
6 Mironova IA, Usoskin IG, Kovaltsov GA, Petelina SV, Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence, Atmos. Chem. Phys. 12, 769-778 (2012). https://doi.org/10.5194/acp-12-769-2012   DOI
7 Moon GH, Ha KY, Kang SH, Lee BH, Kim KB, et al., Acidity in precipitation and solar north-south asymmetry, J. Astron. Space Sci. 31, 325-333 (2014). https://doi.org/10.5140/JASS.2014.31.4.325   DOI
8 Na SH, Cho J, Kim, TH, Seo K, Youm K, et al., Changes in the Earth's spin rotation due to the atmospheric effects and reduction in glaciers, J. Astron. Space Sci. 33, 295-304 (2016). https://doi.org/10.5140/JASS.2016.33.4.295   DOI
9 Nakano M, Sawada M, Nasuno T, Satoh M, Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model, Geophys. Res. Lett. 42, 565-571 (2015). https://doi.org/10.1002/2014GL062479   DOI
10 Nakano S, Ito K, Suzuki K, Ueno G, Decadal-scale meridional shift of the typhoon recurvature latitude over five decades, Int. J. Clim. 36, 3819-3827 (2016). https://doi.org/10.1002/joc.4595   DOI
11 Nakazawa T, Madden-Julian oscillation activity and typhoon landfall on Japan in 2004, SOLA 2, 136-139 (2006). https://doi.org/10.2151/sola.2006-035   DOI
12 Ney ER, Cosmic radiation and the weather, Nature 183, 451-452 (1959). https://doi.org/10.1038/183451a0   DOI
13 Oey LY, Chou S, Evidence of rising and poleward shift of storm surge in western North Pacific in recent decades, J. Geophys. Res. 121, 5181-5192 (2016). https://doi.org/10.1002/2016JC011777   DOI
14 Ogurtsov MG, Jungner H, Kocharov GE, Lindholm M, Eronen M, Nitrate concentration in Greenland ice: an indicator of changes in fluxes of solar and galactic high-energy particles, Sol. Phys. 222, 177-190 (2004). https://doi.org/10.1023/B:SOLA.0000036855.04018.06   DOI
15 Park JH, Chang HY, Drought over Seoul and its association with solar cycles, J. Astron. Space Sci. 30, 241-246 (2013). https://doi.org/10.5140/JASS.2013.30.4.241   DOI
16 Peng MS, Fu B, Li T, Stevens DE, Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic, Mon. Weather Rev. 140, 1047-1066 (2012). https://doi.org/10.1175/2011MWR3617.1   DOI
17 Tinsley BA, Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev. 94, 231-258 (2000). https://doi.org/10.1023/A:1026775408875   DOI
18 Sagir S, Karatay S, Atici R, Yesil A, Ozcan O, The relationship between the quasi biennial oscillation and sunspot number, Adv. Space Res. 55, 106-112 (2015). https://doi.org/10.1016/j.asr.2014.09.035   DOI
19 Storini M, Damiani A, Effects of the January 2005 GLE/SPE events on minor atmospheric components, Proc. 30th Int. Cosmic Ray Conf. 1, 277-280 (2008).
20 Svensmark H, Friis-Christensen E, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phys. 59, 1225-1232 (1997). https://doi.org/10.1016/S1364-6826(97)00001-1   DOI
21 Gray LJ, Scaife AA, Mitchell DM, Osprey S, Ineson S, et al., A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns, J. Geophys. Res. 118, 13405-13420 (2013). https://doi.org/10.1002/2013JD020062
22 Zhou BT, Cui X, Interdecadal change of the linkage between the North Atlantic oscillation and the tropical cyclone frequency over the western North Pacific, Sci. China Earth Sci. 57, 2148-2155 (2014). https://doi.org/10.1007/s11430-014-4862-z   DOI
23 Zhou J, Tung KK, Solar cycles in 150 years of global sea surface temperature data, J. Clim. 23, 3234-3248 (2010). https://doi.org/10.1175/2010JCLI3232.1   DOI
24 Zhou L, Tinsley B, Chu H, Xiao Z, Correlations of global sea surface temperatures with the solar wind speed, J. Atmos. Sol.-Terr. Phys. 149, 232-239 (2016). https://doi.org/10.1016/j.jastp.2016.02.010   DOI
25 Admiranto AG, Priyatikanto R, Multi-wavelength observations of two explosive events and their effects on the solar atmosphere, J. Astron. Space Sci. 33, 197-205 (2016). https://doi.org/10.5140/JASS.2016.33.3.197   DOI
26 Artamonova I, Veretenenko S, Galactic cosmic ray variation influence on baric system dynamics at middle latitudes, J. Atmos. Sol.-Terr. Phys. 73, 366-370 (2011). https://doi.org/10.1016/j.jastp.2010.05.004   DOI
27 Goh AZC, Chan JCL, Variations and prediction of the annual number of tropical cyclones affecting Korea and Japan, Int. J. Clim. 32, 178-189 (2012). https://doi.org/10.1002/joc.2258   DOI
28 Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al., Solar influences on climate, Rev. Geophys. 48, RG4001 (2010). https://doi.org/10.1029/2009RG000282   DOI
29 Pudovkin MI, Influence of solar activity on the lower atmosphere state, Int. J. Geomagn. Aeron. 5, GI2007 (2004).
30 Perez-Peraza J, Kavlakov S, Velasco V, Gallegos-Cruz A, Azpra-Romero E, et al., Solar, geomagnetic and cosmic ray intensity changes, preceding the cyclone appearances around Mexico, Adv. Space Res. 42, 1601-1613 (2008). https://doi.org/10.1016/j.asr.2007.12.004   DOI
31 Pudovkin MI, Veretenenko SV, Pellinen R, Kyro E, Meteorological characteristic changes in the high-latitudinal atmosphere associated with Forbush decreases of the galactic cosmic rays, Adv. Space Res. 20, 1169-1172 (1997). https://doi.org/10.1016/S0273-1177(97)00767-9   DOI
32 Reid GC, Solar variability and the Earth's climate: introduction and overview, Space Sci. Rev. 94, 1-11 (2000). https://doi.org/10.1023/A:1026797127105   DOI
33 Reid GC, Solomon S, Garcia RR, Response of the middle atmosphere to the solar proton events of August-December, 1989, Geophys. Res. Lett. 18, 1019-1022 (1991). https://doi.org/10.1029/91GL01049   DOI
34 Roldugin VC, Tinsley BA, Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, J. Atmos. Sol.-Terr. Phys. 66, 1143-1149 (2004). https://doi.org/10.1016/j.jastp.2004.05.006   DOI
35 Roy I, Haigh JD, Solar cycle signals in sea level pressure and sea surface temperature, Atmos. Chem. Phys. 10, 3147-3153 (2010). https://doi.org/10.5194/acp-10-3147-2010   DOI
36 Roy I, Haigh JD, Solar cycle signals in the pacific and the issue of timings, J. Atmos. Sci. 69, 1446-1451 (2012). https://doi.org/10.1175/JAS-D-11-0277.1   DOI
37 Wu L, Wang C, Wang B, Westward shift of western North Pacific tropical cyclogenesis, Geophys. Res. Lett. 42, 1537-1542 (2015). https://doi.org/10.1002/2015GL063450   DOI
38 Wang B, Chan JCL, How strong ENSO events affect tropical storm activity over the western North Pacific, J. Clim. 15, 1643-1658 (2002). https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2   DOI
39 Wang SY, Gillies RR, Jin J, Hipps LE, Coherence between the Great Salt Lake level and the pacific quasi-decadal oscillation, J. Clim. 23, 2161-2177 (2010). https://doi.org/10.1175/2009JCLI2979.1   DOI
40 Webster PJ, Holland GJ, Curry JA, Chang HR, Changes in tropical cyclone number, duration, and intensity in a warming environment, Science 309, 1844-1846 (2005). https://doi.org/10.1126/science.1116448   DOI
41 Xie L, Yan T, Pietrafesa LJ, Morrison JM, Karl T, Climatology and interannual variability of North Atlantic hurricane tracks, J. Clim. 18, 5370-5381 (2005). https://doi.org/10.1175/JCLI3560.1   DOI
42 Yamada Y, Oouchi K, Satoh M, Tomita H, Yanase W, Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-system-resolving approach, Geophys. Res. Lett. 37, L07709 (2010). https://doi.org/10.1029/2010GL042518   DOI
43 Haigh JD, The Sun and the Earth's climate, Living Rev. Sol. Phys. 4, 2 (2007). https://doi.org/10.12942/lrsp-2007-2   DOI
44 Bazilevskaya GA, Usoskin IG, Fluckiger EO, Harrison RG, Desorgher L, et al., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev. 137, 149-173 (2008). https://doi.org/10.1007/s11214-008-9339-y   DOI
45 Gray LJ, Ball W, Misios S, Solar influences on climate over the Atlantic/European sector, AIP Conf. Proc. 1810, 020002 (2017). https://doi.org/10.1063/1.4975498   DOI
46 Gray WM, The formation of tropical cyclones, Meteorol. Atmos. Phys. 67, 37-69 (1998). https://doi.org/10.1007/BF01277501   DOI
47 Gualdi S, Scoccimarro E, Navarra A, Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model, J. Clim. 21, 5204-5228 (2008). https://doi.org/10.1175/2008JCLI1921.1   DOI
48 Haam E, Tung KK, Statistics of solar cycle-La Nina connection: correlation of two autocorrelated time series, J. Atmos. Sci. 69, 2934-2939 (2012). https://doi.org/10.1175/JAS-D-12-0101.1   DOI
49 Ho CH, Kim HS, Jeong JH, Son SW, Influence of stratospheric quasi-biennial oscillation on tropical cyclone tracks in the western North Pacific, Geophys. Res. Lett. 36, L06702 (2009). https://doi.org/10.1029/2009GL037163   DOI
50 Saunders MA, Chandler RE, Merchant CJ , Roberts FP, Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall, Geophys. Res. Lett. 27, 1147-1150 (2000). https://doi.org/10.1029/1999GL010948   DOI
51 Scafetta N, West BJ, Phenomenological solar contribution to the 1900-2000 global surface warming, Geophys. Res. Lett. 33, L05708 (2006). https://doi.org/10.1029/2005GL025539   DOI
52 Scoccimarro E, Gualdi S, Villarini G, Vecchi GA, Zhao M, et al., Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2, J. Clim. 27, 4642-4654 (2014). https://doi.org/10.1175/JCLI-D-14-00065.1   DOI
53 Shen W, Tuleya RE, Ginis I, A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming, J. Clim. 13, 109-121 (2000). https://doi.org/10.1175/1520-0442(2000)013<0109:ASSOTT>2.0.CO;2   DOI
54 Sinnhuber M, Nieder H, Wieters N, Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere, Surv. Geophys. 33, 1281-1334 (2012). https://doi.org/10.1007/s10712-012-9201-3   DOI
55 Sobel AH, Camargo SJ, Hall TM, Lee CY, Tippett MK, et al., Human influence on tropical cyclone intensity, Science 353, 242-246 (2016). https://doi.org/10.1126/science.aaf6574   DOI
56 Van Loon H, Meehl GA, The response in the pacific to the sun's decadal peaks and contrasts to cold events in the southern oscillation, J. Atmos. Sol.-Terr. Phys. 70, 1046-1055 (2008). https://doi.org/10.1016/j.jastp.2008.01.009   DOI
57 Tinsley BA, Deen GW, Apparent tropospheric response to MeV-GeV particle flux variations: a connection via electrofreezing of supercooled water in high-level clouds?, J. Geophys. Res. 96, 22283-22296 (1991). https://doi.org/10.1029/91JD02473   DOI
58 Tinsley BA, Heelis RA, Correlations of atmospheric dynamics with solar activity evidence for a connection via the solar wind, atmospheric electricity, and cloud microphysics, J. Geophys. Res. 98, 10375-10384 (1993). https://doi.org/10.1029/93JD00627   DOI
59 Trenberth K, Uncertainty in hurricanes and global warming, Science 308, 1753-1754 (2005). https://doi.org/10.1126/science.1112551   DOI
60 Van Loon H, Meehl GA, Shea DJ, Coupled air-sea response to solar forcing in the pacific region during northern winter, J. Geophys. Res. 112, D02108 (2007). https://doi.org/10.1029/2006JD007378   DOI
61 Burns AG, Zeng Z, Wang W, Lei J, Solomon SC, et al., Behavior of the F2 peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data, J. Geophys. Res. 113, A12305 (2008). https://doi.org/10.1029/2008JA013308   DOI
62 Yan Y, Qi Y, Zhou W, Variability of tropical cyclone occurrence date in the South China Sea and its relationship with SST warming, Dyn. Atmos. Oceans 55-56, 45-59 (2012). https://doi.org/10.1016/j.dynatmoce.2012.05.001   DOI
63 Yang TY, Kwak YS, Kim YH, Statistical comparison of gravity wave characteristics obtained from airglow all-sky observation at Mt. Bohyun, Korea and Shigaraki, Japan, J. Astron. Space Sci. 32, 327-333 (2015). https://doi.org/10.5140/JASS.2015.32.4.327   DOI
64 Yoshida R, Ishikawa H, Environmental factors contributing to tropical cyclone genesis over the western North Pacific, Mon. Weather Rev. 141, 451-467 (2013). https://doi.org/10.1175/MWR-D-11-00309.1   DOI
65 Bender FAM, Ekman AML, Rodhe H, Response to the eruption of Mount Pinatubo in relation to climate sensitivity in the CMIP3 models, Clim. Dyn. 35, 875-886 (2010). https://doi.org/10.1007/s00382-010-0777-3   DOI
66 Burns AG, Solomon SC, Wang W, Killeen TL, The ionospheric and thermospheric response to CMEs: challenges and successes, J. Atmos. Sol.-Terr. Phys. 69, 77-85 (2007). https://doi.org/10.1016/j.jastp.2006.06.010   DOI
67 Camargo SJ, Sobel AH, Western North Pacific tropical cyclone intensity and ENSO, J. Clim. 18, 2996-3006 (2005). https://doi.org/10.1175/JCLI3457.1   DOI
68 Chan JCL, Tropical cyclone activity over the western North Pacific associated with El-Nino and La Nina events, J. Clim. 13, 2960-2972 (2006). https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2   DOI
69 Chan JCL, Liu KS, Global warming and western North Pacific typhoon activity from an observational perspective, J. Clim. 17, 4590-4602 (2004). https://doi.org/10.1175/3240.1   DOI
70 Chang HY, Correlation of parameters characterizing the latitudinal distribution of sunspots, New Astron. 16, 456-460 (2011). https://doi.org/10.1016/j.newast.2011.04.003   DOI
71 Chen TC, Wang SY, Yen MC, Interannual variation of the tropical cyclone activity over the western North Pacific, J. Clim. 19, 5709-5720 (2006). https://doi.org/10.1175/JCLI3934.1   DOI
72 Vitt FM, Cravens TE, Jackman CH, A two-dimensional model of thermospheric nitric oxide sources and their contributions to the middle atmospheric chemical balance, J. Atmos. Sol.-Terr. Phys. 62, 653-667 (2000). https://doi.org/10.1016/S1364-6826(00)00049-3   DOI
73 Jackman CH, DeLand MT, Labow GJ, Fleming EL, Weisenstein DK, et al., Neutral atmospheric influences of the solar proton events in October-November 2003, J. Geophys. Res. 110, A09S27 (2005). https://doi.org/10.1029/2004JA010888   DOI
74 Jo Y, Chang HY, Revisiting the correlations of peak luminosity with spectral lag and peak energy of the observed gammaray bursts, J. Astron. Space Sci. 33, 247-256 (2016). http://doi.org/10.5140/JASS.2016.33.4.247   DOI
75 Karakhanyan AA, Molodyk SI, Evolution of extratropical cyclones during disturbed geomagnetic conditions, Geomagn. Aeron. 57, 535-540 (2017). https://doi.org/10.1134/S0016793217050115   DOI
76 Veretenenko S, Thejll P, Effects of energetic solar proton events on the cyclone development in the North Atlantic, J. Atmos. Sol.-Terr. Phys. 66, 393-405 (2004). https://doi.org/10.1016/j.jastp.2003.11.005   DOI
77 Vitt FM, Jackman CH, A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth's middle atmosphere as calculated using a two-dimensional model, J. Geophys. Res. 101, 6729-6739 (1996). https://doi.org/10.1029/95JD03386   DOI
78 Zhang W, Graf HF, Leung Y, Herzog M, Different El-Nino types and tropical cyclone landfall in East Asia, J. Clim. 25, 6510-6523 (2012). https://doi.org/10.1175/JCLI-D-11-00488.1   DOI
79 Yoshimura H, Matsumura T, A two-time-level vertically-conservative semi-Lagrangian semi-implicit double Fourier series AGCM, CAS/JSC WGNE Res. Act. Atmos. Ocean Model. 35, 27-28 (2005).
80 Yu B, Lin H, Tropical atmospheric forcing of the wintertime North Atlantic oscillation, J. Clim. 29, 1755-1772 (2016). https://doi.org/10.1175/JCLI-D-15-0583.1   DOI
81 Zhao H, Yoshida R, Raga GB, Impact of the Madden-Julian oscillation on western North Pacific tropical cyclogenesis associated with large-scale patterns, J. Appl. Meteorol. Clim. 54, 1413-1429 (2015). https://doi.org/10.1175/JAMC-D-14-0254.1   DOI
82 Zhao M, Held IM, Lin SJ, Vecchi GA, Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM, J. Clim. 22, 6653-6678 (2009). https://doi.org/10.1175/2009JCLI3049.1   DOI
83 Choi JW, Kim BJ, Zhang R, Park KJ, Kim JY, et al., Possible relation of the western North Pacific monsoon to the tropical cyclone activity over western North Pacific, Int. J. Clim. 36, 3334-3345 (2016). https://doi.org/10.1002/joc.4558   DOI
84 Cho IH, Chang HY, Long term variability of the sun and climate change, J. Astron. Space Sci. 25, 395-404 (2008). https://doi.org/10.5140/JASS.2008.25.4.395   DOI
85 Cho IH, Kwak YS, Chang HY, Cho KS, Kim YH, et al., The global temperature anomaly and solar North-South asymmetry, Asia-Pac. J. Atmos. Sci. 48, 253-257 (2012a). https://doi.org/10.1007/s13143-012-0025-3   DOI
86 Cho IH, Kwak YS, Marubashi K, Kim YH, Park YD, et al., Changes in sea-level pressure over South Korea associated with high-speed solar wind events, Adv. Space Res. 50, 777-782 (2012b). https://doi.org/10.1016/j.asr.2011.06.025   DOI
87 Choi JW, Cha YM, Kim HD, Interdecadal variation of precipitation days in August in the Korean Peninsula, Dyn. Atmos. Oceans 77, 74-88 (2017). https://doi.org/10.1016/j.dynatmoce.2016.10.003   DOI
88 Choi KS, Byun HR, Possible relationship between western North Pacific tropical cyclone activity and Arctic Oscillation, Theor. Appl. Clim. 100, 261-274 (2010). https://doi.org/10.1007/s00704-009-0187-9   DOI
89 Choi KS, Moon IJ, Influence of the Western Pacific teleconnection pattern on western North Pacific tropical cyclone activity, Dyn. Atmos. Oceans 57, 1-16 (2012). https://doi.org/10.1016/j.dynatmoce.2012.04.002   DOI
90 Damiani A, Storini M, Santee ML, Wang S, Variability of the nighttime OH layer and mesospheric ozone at high latitudes during northern winter: influence of meteorology, Atmos. Chem. Phys. 10, 10291-10303 (2010). https://doi.org/10.5194/acp-10-10291-2010   DOI
91 Garcia RR, Solomon S, Roble RG, Rusch DW, A numerical response of the middle atmosphere to the 11-year solar cycle, Planet. Space Sci. 32, 411-423 (1984). https://doi.org/10.1016/0032-0633(84)90121-1   DOI
92 Elsner JB, Jagger TH, United States and Caribbean tropical cyclone activity related to the solar cycle, Geophys. Res. Lett. 35, L18705 (2008). https://doi.org/10.1029/2008GL034431   DOI
93 Elsner JB, Jagger TH, Hodges RE, Daily tropical cyclone intensity response to solar ultraviolet radiation, Geophys. Res. Lett. 37, L09701 (2010). https://doi.org/10.1029/2010GL043091   DOI
94 Emanuel K, Increasing destructiveness of tropical cyclones over the past 30 years, Nature 436, 686-688 (2005). https://doi.org/10.1038/nature03906   DOI
95 Friis-Christensen E, Lassen K, Length of the solar cycle: An indicator of solar activity closely associated with climate, Science 254, 698-700 (1991). https://doi.org/10.1126/science.254.5032.698   DOI
96 Funke B, Baumgaertner A, Calisto M, Egorova T, Jackman CH, et al., Composition changes after the "Halloween" solar proton event: the high energy particle precipitation in the atmosphere (HEPPA) model versus MIPAS data intercomparison study, Atmos. Chem. Phys. 11, 9089-9139 (2011). https://doi.org/10.5194/acp-11-9089-2011   DOI
97 Gleixner S, Keenlyside N, Hodges KI, Tseng WL, Bengtsson L, An inter-hemispheric comparison of the tropical storm response to global warming, Clim. Dyn. 42, 2147-2157 (2014). https://doi.org/10.1007/s00382-013-1914-6   DOI
98 Kniveton DR, Tinsley BA, Burns GB, Bering EA, Troshichev OA, Variations in global cloud cover and the fair-weather vertical electric field, J. Atmos. Sol.-Terr. Phys. 70, 1633-1642 (2008). https://doi.org/10.1016/j.jastp.2008.07.001   DOI
99 Kim JH, Chang HY, Statistical properties of geomagnetic activity indices and solar wind parameters, J. Astron. Space Sci. 31, 149-157 (2014a). https://doi.org/10.5140/JASS.2014.31.2.149   DOI
100 Kim JH, Chang HY, Spectral analysis of geomagnetic activity indices and solar wind parameters, J. Astron. Space Sci. 31, 159-167 (2014b). https://doi.org/10.5140/JASS.2014.31.2.159   DOI
101 Kossin JP, Emanuel KA, Vecchi GA, The poleward migration of the location of tropical cyclone maximum intensity, Nature 509, 349-352 (2014). https://doi.org/10.1038/nature13278   DOI
102 Kossin JP, Emanuel KA, Camargo SJ, Past and projected changes in western North Pacific tropical cyclone exposure, J. Clim. 29, 5725-5739 (2016). https://doi.org/10.1175/JCLID-16-0076.1   DOI
103 Labitzke K, Sunspots, the QBO, and the stratospheric temperature in the north polar region, Geophys. Res. Lett. 14, 535-537 (1987). https://doi.org/10.1029/GL014i005p00535   DOI
104 Labitzke K, van Loon H, Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: the troposphere and stratosphere in the northern hemisphere in winter, J. Atmos. Terr. Phys. 50, 197-206 (1988). https://doi.org/10.1016/0021-9169(88)90068-2   DOI
105 Lam MM, Chisham G, Freeman MP, The interplanetary magnetic field influences mid-latitude surface atmospheric pressure, Environ. Res. Lett. 8, 045001 (2013). https://doi.org/10.1088/1748-9326/8/4/045001   DOI
106 Kavlakov SP, Global cosmic ray intensity changes, solar activity variations and geomagnetic disturbances as North Atlantic hurricane precursors, Int. J. Mod. Phys. A 20, 6699 (2005). https://doi.org/10.1142/S0217751X0502985X   DOI
107 Lee EH, Lee DY, Park MY, Kim S, Park SJ, Holocene climate variability on the centennial and millennial time scale, J. Astron. Space Sci. 31, 335-340 (2014). https://doi.org/10.5140/JASS.2014.31.4.335   DOI
108 Lander MA, An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO, Mon. Weather Rev. 122, 636-651 (1994). https://doi.org/10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2   DOI
109 Larson J, Zhou Y, Higgins RW, Characteristics of landfalling tropical cyclones in the United States and Mexico: climatology and interannual variability, J. Clim. 18, 1247-1262 (2005). https://doi.org/10.1175/JCLI3317.1   DOI
110 Lee CY, Tippett MK, Sobel AH, Camargo SJ, Rapid intensification and the bimodal distribution of tropical cyclone intensity, Nature Commun. 7, 10625 (2016). https://doi.org/10.1038/ncomms10625   DOI
111 Lee HS, Yamashita T, Mishima T, Multi-decadal variations of ENSO, the pacific decadal oscillation and tropical cyclones in the western North Pacific, Prog. Ocean. 105, 67-80 (2012). https://doi.org/10.1016/j.pocean.2012.04.009   DOI
112 Lee S, Yi Y, Abnormal winter melting of the Arctic sea ice cap observed by the spaceborne passive microwave sensors, J. Astron. Space Sci. 33, 305-311 (2016). https://doi.org/10.5140/JASS.2016.33.4.305   DOI
113 Liebmann B, Hendon HH, Glick JD, The relationship between tropical cyclones of the Western Pacific and Indian Oceans and the Madden-Julian Oscillation, J. Meteorol. Soc. Japan 72, 401-412 (1994). https://doi.org/10.2151/jmsj1965.72.3_401   DOI
114 MacDonald GM, Case RA, Variations in the pacific decadal oscillation over the past millennium, Geophys. Res. Lett. 32, L08703 (2005). https://doi.org/10.1029/2005GL022478   DOI
115 Marsh N, Svensmark H, Cosmic rays, clouds, and climate, Space Sci. Rev. 94, 215-230 (2000). https://doi.org/10.1023/A:1026723423896   DOI
116 Mazzarella A, Palumbo F, Rainfall fluctuations over Italy and their association with solar activity, Theor. Appl. Clim. 45, 201-207 (1992). https://doi.org/10.1007/BF00866193   DOI