• Title/Summary/Keyword: trolley

Search Result 195, Processing Time 0.037 seconds

Development of Wireless Gantry Loader System (무선 갠트리 로더 시스템 개발)

  • Kang, Dong-Bae;Ahn, Joong-Hwan;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4296-4301
    • /
    • 2011
  • Gantry loader which is also called as gantry robot is a kind of cartesian coordinate robot with two or more linear motions. A conventional gantry system has cableveyor for protecting power and signal cables, but the use of cableveyor makes a delay of work due to frequent repairing for its aging. This study reports that a wireless gantry loader is able to be operated without a power line for power transmission or a signal cable for motion control. The wireless gantry loader enables a convenient maintenance and a stable productivity by the reduction of wire broken from fatigue. The developed loader system is controlled by PC-based motion controller and is communicated by wireless LAN devices. The line from a power source to the loader system was substituted by attaching trolley bar on the traveling beam. The loader system was designed to be moved with high speed and high repeatability, and the motion was observed continuously by monitoring system in the PC-based controller. The maximum speed and the repeatability for the transferring and loading axes are 200 m/min, 60 mm and 100 m/min, 40 mm respectively.

Fuzzy Nonlinear Adaptive Control of Overhead Cranes for Anti-Sway Trajectory Tracking and High-Speed Hoisting Motion (고속 권상운동과 흔들림억제 궤적추종을 위한 천정주행 크레인의 퍼지 비선형 적응제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.582-590
    • /
    • 2007
  • Nonlinear adaptive control of overhead cranes is investigated for anti-sway trajectory tracking with high-speed hoisting motion. The sway dynamics of two dimensional underactuated overhead cranes is heavily coupled with the trolley acceleration, hoisting rope length, and the hoisting velocity which is an obstacle in the design of decoupling control based anti-sway trajectory tracking control law To cope with this obstacle. we propose a fuzzy nonlinear adaptive anti-sway trajectory tracking control law guaranteeing the uniform ultimate boundedness of the sway dynamics even in the presence of uncertainties in such a way that it cancels the effect of the trolley acceleration and hoisting velocity on the sway dynamics. In particular. system uncertainties, including system parameter uncertainty unmodelled dynamics, and external disturbances, are compensated in an adaptive manner by utilizing fuzzy uncertainty observers. Accordingly, the ultimate bound of the tracking errors and the sway angle decrease to zero when the fuzzy approximation errors decrease to zero. Finally, numerical simulations are performed to confirm the effectiveness of the proposed scheme.

An Analysis of Accident Costs according to Ethical Choice of Autonomous Vehicles (자율주행자동차의 윤리적 선택에 따른 교통사고비용 분석)

  • Jung, Seung weon;Hwang, Kee Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.224-239
    • /
    • 2018
  • Autonomous vehicles can significantly reduce accidents due to 'driver's carelessness', which occupies the majority of causes for traffic accidents, but they may fail to avoid traffic accidents due to unexpected situations, such as "trolley dilemma", vehicle defects and road defects. Therefore in situations Autonomous vehicles need to be made ethical choices. This study assumes that Autonomous vehicles can not avoid traffic accidents due to unexpected sink holes. In this situation, the traffic accident costs was analyzed for the ethical choices of Autonomous vehicles. In the process, Autonomous vehicles were made to choose one of three ethical choices : (1) Egoism with priority on passenger safety, (2) Deontology for minimizing human damages, (3) Utilitarianism with minimizing traffic accident costs. As a result of the analysis, egoism had the highest traffic accident costs, and deontology for minimizing human damages had the lowest traffic accident costs.

A meta-study on the analysis of the limitations of modern artificial intelligence technology and humanities insight for the realization of a super-intelligent cooperative society of human and artificial intelligence (인간 및 인공지능의 초지능 협력사회 실현을 위한 현대 인공지능 기술의 한계점 분석과 인문사회학적 통찰력에 대한 메타 연구)

  • Hwang, Su-Rim;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1013-1018
    • /
    • 2021
  • Due to the recent accident caused by the automated vehicle, discussions on the ethical aspects of AI have been actively underway. This paper confirms that AI is inevitably connected to ethical components through the concepts and techniques related to robots-AI, and argues that ethical aspects are built-in, not post facto. Furthermore, this devises a solution to the trolley dilemma that can serve as a clue to ethical problems associated with automated vehicles. Preferentially, that process contains writing Bayesian networks. Next, only important and influential data are left after the pre-processing stage, and crowd-sourcing & extrapolation is used to calculate the exact figures of the networks. Through this process, this argues that humans' subjects are certainly included in implementing algorithms and models and discusses the necessity and direction of engineering liberal arts, especially education of ethics that distinguished from major education to prevent distortions and biases abouts AI systems.

An Automatic Travel Control of a Container Crane using Neural Network Predictive PID Control Technique

  • Suh Jin-Ho;Lee Jin-Woo;Lee Young-Jin;Lee Kwon-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • In this paper, we develop anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2-DOF PID controller. The experimental results jar an ATC simulator show that the proposed control scheme guarantees performances, trolley position, sway angle, and settling time in NNP PID controller than other controller. As a result, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard.

Anti-Sway Control of Container Cranes;Inclinometer, Observers, and State Feedback

  • Kim, Yong-Seok;Hong, Keum-Shik;Sul, Seung-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1365-1370
    • /
    • 2004
  • In this paper, a novel anti-sway control system that uses an inclinometer as a sway sensor is investigated. The inclinometer, when compared with a vision system, is very cheap, durable, and its maintenance is easy. However, it gives almost the same performance. Various observers for estimating the angular velocity of the load and the trolley velocity are presented. A state feedback controller with an integrator is designed. After a time-scale analysis, a 1/4-size pilot crane of the rail-mounted quayside crane is constructed. The performance of the proposed control system was verified with a real rubber-tired gantry crane at a container terminal as well as with the pilot crane constructed. Experimental results are provided.

  • PDF

Development of the Position Control Algorithm for Nonlinear Overhead Crane Systems (비선형 천장 크레인시스템의 위치제어 알고리즘 개발)

  • 이종규;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.142-147
    • /
    • 2000
  • An overhead crane system which transports an object by girder motion, trolley motion, and hoist motion becomes a nonlinear system because the length of a rope changes. To develope the position control algorithm for the nonlinear crane systems, we apply a nonlinear optimal control method which uses forward and backward difference methods and obtain optimal inputs. This method is suitable for the overhead crane system which is characterized by the differential equation of higher degree and swing motion. From the results of computer simulation, it is founded that the position of the overhead crane system is controlled, and the swing of the object is suppressed.

  • PDF

Sliding-Mode Control of Container Cranes (컨테이너 크레인의 슬라이딩 모드제어)

  • 이숙재;홍금식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.151-157
    • /
    • 2004
  • In this paper, we propose a simple control scheme, based on second order sliding modes, which guarantees a fast and precise container transfer and the swing suppression during the container movement, despite of model uncertainties and unmodeled dynamic actuators. In the actual case, the swing suppression is obtained by constraining the system motion on a suitable surface which involves both the desired path and the swing angle. Strictly speaking, the trolley velocity is modified on-line, on the actual swing angle, to obtain the suppression of the oscillations not only at the end of the transport but during transfer as well. Such controller has been tested on a laboratory-size model of the 3Dcrane, and some experimental results are reported.

  • PDF

Control Architecture for Automated Container Cranes (무인자동화를 위한 컨테이너크레인의 제어구조)

  • 김형진;홍경태;홍금식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.746-751
    • /
    • 2004
  • Demands for higher productivity in container terminal environments continues to escalate consideration of equipment upgrades. And then transportation of containers using the automated container crane becomes more and more important for productivity enhancements. Introducing a hybrid control architecture to the container crane, it provides a effective means to the automated operation of the container crane. This paper addresses the methodology for automation of container cranes. In addition, this paper proposes a new control architecture for the automated container crane and explains each component of that architecture. The control architecture is composed of a deliberative control layer, a sequencing layer, and a reactive control layer. The proposed architecture is applied to a dual-hoist double-trolley container crane.

  • PDF

Development of a Measurement System for Contact Force Analysis of Trolley Line (전기철도 전차선 접촉력 측정 및 분석시스템 개발)

  • Kim, In-Chol;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.82-87
    • /
    • 2010
  • A measurement system of contact force between overhead contact line and pantograph of train is developed which measures the contact force by using four sets of full-bridge strain gauges instead of load cells and accelerometers. The sensors are installed on the pan head of pantograph and the measured data from the sensors are transmitted to a server system in the train by way of wireless Lan. This configuration of the measuring system makes it easy to install on the trains without any alteration of train system. The measurement system is applied to KTX on the Kyungbu high speed line, and the measured contact force data shows good agreement with those measured by load cell and accelerometers. The waveform of the contact force between overhead contact line and pantograph contains essential information about their conditions. The proposed measurement system can probe any defects on overhead contact lines with train running at high speed, which will be a powerful solution for the maintenance of long-distance overhead contact lines.