• Title/Summary/Keyword: tritium

Search Result 283, Processing Time 0.024 seconds

The Role of Adenosine Receptors on Acetylcholine Release in the Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 미치는 Adenosine 수용체의 역할)

  • Choi, Bong-Kyu;Kim, Do-Kyung
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.2
    • /
    • pp.145-152
    • /
    • 1994
  • As it has been reported that the depolarization induced acetylcholine(ACh) release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor and various lines of evidence indicate the $A_2-receptor$ is present In hippocampus, this study was undertaken to delineate the role of adenosine receptors on hippocampal ACh release. Slices from the rat hippocampus were equilibrated with $[^3H]-choline$ and the release of the labelled product, $[^3H]-ACh$, which evoked by electrical stimulation(3 Hz, $5\;Vcm^{-1}$, 2 ms, rectangular pulses) was measured, and the influence of various agents on the evoked tritium outflow was Investigated. Adenosine$(0.3{\sim}100\;{\mu}M)$ and CPA$(0.1{\sim}30\;{\mu}M)$ decreased the $[^3H]-ACh$ release in a dose-dependent manner without changing the basal rate of release. DPCPX$(1{\sim}10\;{\mu}M)$, a selective $A_1-receptor$, antagonist, increased the $[^3H]-ACh$ release in a dose related fashion with slight increase of basal tritium release. And the effects of adenosine and CPA were significantly inhibited by $DPCPX(2\;{\mu}M)$ treatment. CPCA, a specific $A_2-agonist$, in concentration ranging from 0.3 to 30 ${\mu}M$, decreased the evoked tritium outflow, and these effects were also abolished by $DPCPX(2\;{\mu}M)$ treatment. But the CPCA effects were not affected by $DMPX(2\;{\mu}M)$, a specific Aa-antagonist, treatment. However, CGS 21680c, a recently introduced potent $A_2-agonist$, in concentration ranging from 0.1 to $10{\mu}M$, did not alter the evoked tritium outflow. These results indicate that the decrement of the evoked ACh release by adenosine is mediated by $A_1-heteroreceptor$, but $A_2-adenosine$ receptor is not involved in ACh release in the rat hippocampus.

  • PDF

Groundwater Flow and Tritium Transport Modeling at Kori Nuclear Power Plant 1 Site (고리 1발전소 부지 내 지하수 유동 및 삼중수소 이동 모델링)

  • Sohn, Wook;Sohn, Soon-Hwan;Chon, Chul-Min;Kim, Kue-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.149-159
    • /
    • 2011
  • Nuclear power utilities should establish a site-specific groundwater monitoring program for early detection of unplanned radioactive material's releases which can occur due to degradation of systems, structures and components of the nuclear power plants in order to keep the impact of the unplanned releases on the environment and the residents as low as reasonably achievable. For this end, groundwater flow on site should be evaluated based on characterization of the hydrogeology of a site of concern. This paper aims to provide data necessary for establishing groundwater monitoring program which is currently considered at Kori nuclear power plant 1 by characterizing groundwater flow system on the site based on the existing hydrogeological studies and related documents, and by modeling tritium transport. The results showed that the major groundwater flow direction was south-west and that most of groundwater entered a southern and eastern seas. Although the tritium plume also released into the sea, its rate was delayed by dewatering sump.

Study of the used deuterium absorption material disposal

  • Kim, Dong-Gyung;Kim, Myung-Chul;Lee, Bum-Sig;Lee, Sang-Gu
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.64-72
    • /
    • 2004
  • The dryer (ten per unit) are operating to remove tritium in PHWR(Pressurized Heavy Water Reactor). There are coming out heavy water adsorbent from operating the dryer (95 drums for ten year per unit) The amount of radioactivity of heavy water adsorbent almost exceed ninety times more than disposal limit-in-itself showed by The Ministry of Science and Technology. It has to be disposed whole radioactive waste products, however there are problems of increase at the expense of their permanent disposal. In this research, We have studied how to remove kinds of nuclear materials and amount of tritium with in heavy water adsorbent. As the result we could develop disposal equipment and apply it. D20 adsorbent have to contain below Gamma nuclide O.3Bq/g and tritium 100Bq/g "The Regulation for disposal of the radioactivity wastes" showed by The Ministry of Science and Technology. There fore. So as to remove amount of tritium and kinds of nuclear materials (DTO) we needed a equipment. Also we have studied how to remove effectively radioactivity with in Adsorbent. As cleaning heavy water adsorbent and drying on each condition (temperature for drying and hours for cleaning). Because there is something to return heavy water adsorbent by removing impurities within adsorbent when it is dried o high temperature. After operating, we have been applying this research to the way to dispose heavy water adsorbent. Through this we could reduce solid waste products and the expense of permanent disposal of radioactive waste products and also we could contribute nuclear power plant run safely. According to the result we could keep the best condition of radiation safety super vision and we could help people believe in safety with Radioactivity wastes control for harmony with Environment.

  • PDF

Manufacturing Process of Self-Luminous Glass Tube (SLGT) Utilizing Tritium Gas (I) (삼중수소 활용을 위한 자발광유리관 (SLGT) 제조기술)

  • Kim Kwangsin;Kim Kyeongsook;Chung Eun-Su;Son Soon Hwan;Nam Gi-Jung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.87-95
    • /
    • 2005
  • Laser sealing/cutting technique, one of the 4 core technologies to manufacture self-luminous glass tubes (SLGTs) has been developed. Through the analysis of commercial products it is found that Pyrex Is used for SLGTs. A CO2 laser, which is commonly used for glass work was used for the study The factors affecting the sealing/cutting were laser intensity, duration. Irradiation method, and pressure inside the tube. The whole Process is composed of 2 stages. In the first stage. both ends of the tubes are sealed while tritium is insected in the tubes. And the tritium sealed tubes are cut in the desired size in the second stage. Defocused beam was used for seal ing and focused beam was used for cutting. After the sealing/cutting, the tubes were heat treated to prevent fracture due to the residual heat stress.

  • PDF

Water Chemistry and Age Dating of Springwater in Cheju Island (제주도 용천수의 수질 화학적 특성과 연대 측정에 관한 연구)

  • Kim Jong-Hun;Ahn Jong-Sung
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.727-737
    • /
    • 1992
  • The water chemical characteristics and age dating of springwater in Cheju island had been investigated. C_1, C_4, C_7, C_9 springwaters were not affected by seawater intrusion by TDS and electrical conductivity, relationship of Cl and tritium, Cl and HCO_3 ratio, and total hardness and pseudo hardness. In this case only C_7 springwater was evaluated tasty and healthy mineral springwater by Hahimoto's Mineral Balance Index. On the basis of the mean tritium content of rainfalls and springwater, the average residence time of it, were calculated. Considering the hydrogeologic and hydrochemical condition, completely mixed model seems to be very fit. It was obtained the result that C_9 group springwater (C_{10}, C_{12}, C_{14}) was 1.2 months, C_7 springwater was 5.6 months, and deep groundwater C_{17} was 4 years.

  • PDF

Determination of carbon-14 and tritium in a PWR spent nuclear fuel (PWR 사용후핵연료 중 탄소-14 및 트리튬 정량)

  • Kim, Jung Suk;Park, Soon Dal;Lee, Chang Hun;Song, Byong Chul;Jee, Kwang Yong
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.298-308
    • /
    • 2005
  • The methods for determining C-14 and tritium contents in the spent nuclear fuel sample were developed. The carbon-14($^{14}CO_2$) released during the dissolution of the spent fuel sample and $CaCO_3$ ($CO_2$ carrier) with 8 M $HNO_3$ at $90^{\circ}C$ was collected in trap containing 1.5 M NaOH. The volatile radioactive iodine evolved when the spent fuel was dissolved, was trapped on to Ag-silicagel (Ag-impregnated silicagel) adsorbent in column which is connected to two NaOH traps. The solutions which contain tritium as HTO after fuel dissolution were decontaminated by deionization with a mixture of cation and anion exchange resins and inorganic ionexchangers. The amount of C-14 in the trap solutions and the HTO concentration in the resulting deionization water were then determined by liquid scintillation counting.

Fabrication and Characterization of a Fiber-optic Radiation Sensor for Detection of Tritium (삼중수소 검출용 광섬유 방사선 센서의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Yoo, Wook-Jae;Lee, Bong-Soo;Moon, Joo-Hyun;Park, Byung-Gi;Cho, Young-Ho;Kim, Sin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.4
    • /
    • pp.201-206
    • /
    • 2009
  • In this study, we have fabricated a fiber-optic radiation sensor for detection of tritium using inorganic scintillators and optical fibers. We have tested various kinds of inorganic scintillators such as $Gd_2O_2S$ : Tb, $Y_3Al_5O_{12}$ : Ce, and CsI : Tl to select the most effective sensor tip. In addition, we have measured the scintillating lights using a photomultiplier tube as a function of distance between sensor tips to the source with the different activities of hydride tritium. The final results are compared with those which are obtained using a surface activity monitor.

Design, setup and routine operation of a water treatment system for the monitoring of low activities of tritium in water

  • C.D.R. Azevedo ;A. Baeza ;E. Chauveau ;J.A. Corbacho ;J. Diaz;J. Domange;C. Marquet ;M. Martinez-Roig ;F. Piquemal ;C. Roldan;J. Vasco ;J.F.C.A. Veloso ;N. Yahlali
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2349-2355
    • /
    • 2023
  • In the TRITIUM project, an on-site monitoring system is being developed to measure tritium (3H) levels in water near nuclear power plants. The quite low-energy betas emitted by 3H have a very short average path in water (5 ㎛ as shown by simulations for 18 keV electrons). This path would be further reduced by impurities present in the water, resulting in a significant reduction of the detection efficiency. Therefore, one of the essential requirements of the project is the elimination of these impurities through a filtration process and the removal of salts in solution. This paper describes a water treatment system developed for the project that meets the following requirements: the water produced should be of near-pure water quality according to ISO 3696 grade 3 standard (conductivity < 10 µS/cm); the system should operate autonomously and be remotely monitored.

Shield Material Consideration in the LAR Tokamak Reactor

  • Hong, B.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.314-314
    • /
    • 2010
  • For the optimal design of a tokamak-type reactor, self-consistent determination of a radial build of reactor systems is important and the radial build has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor systems. In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the shield should provide sufficient protection for the superconducting TF coil and the shield plays a key role in determining the size of a reactor. To determine the radial build of a reactor, neutronic effects such as tritium breeding in the blanket, nuclear heating, and radiation damage to toroidal field (TF) coil has to be included in the systems analysis. In this work, the outboard blanket only is considered where tritium self-sufficiency is possible by using an inboard neutron reflector instead of breeding blanket. The reflecting shield should provide not only protection for the superconducting TF coil but also improved neutron economy for the tritium breeding in outboard blanket. Tungsten carbide, metal hydride such as titanium hydride and zirconium hydride can be used for improved shielding performance and thus smaller shield thickness. With the use of advanced technology in the shield, conceptual design of a compact superconducting LAR reactor with aspect ratio of less than 2 will be presented as a viable power plant.

  • PDF

Neutronic investigation of waste transmutation option without partitioning and transmutation in a fusion-fission hybrid system

  • Hong, Seong Hee;Kim, Myung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1060-1067
    • /
    • 2018
  • A feasibility of reusing option of spent nuclear fuel in a fusion-fission hybrid system without partitioning was checked as an alternative option of pyro-processing with critical reactor system. Neutronic study was performed with MCNP 6.1 for this option, direct reuse of spent PWR fuel (DRUP). Various options with DRUP fuel were compared with the reference design concept; transmutation purpose blanket with (U-TRU)Zr fuel loading connected with pyro-processing. Performance parameters to be compared are transmutation performance of transuranic (TRU) nuclides, required fusion power and tritium breeding ratio (TBR). When blanket part is loaded only with DRUP, initial $k_{eff}$ level becomes too low to maintain a practical subcritical system, increasing the required fusion power. In this case, production rate of TRU nuclides exceeds the incineration rate. Design optimization is done for combining DRUP fuel with (U-TRU)Zr fuel. Reactivity swing is reduced to about 2447 pcm through fissile breeding compared to (U-TRU)Zr fuel option. Therefore, a required fusion power is reduced and tritium breeding performance is improved. However, transmutation performance with TRU nuclides especially $^{241}Am$ is degraded because of softening effect of spectrum. It is known that partitioning and transmutation should be accompanied with fusion-fission hybrid system for the effective transmutation of TRU.