• Title/Summary/Keyword: tris(2,2'-bipyridyl)ruthenium(II)

Search Result 4, Processing Time 0.018 seconds

Electrochemistry of Tris(2,2'-bipyridyl)Ruthenium(II)-Sodium Dodecyl Sulfate in 300 mM $H_2SO_4$ Solution

  • Ko, Young Chun
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • Electrochemistry of 1.0 mM tris(2,2'-bipyridyl)ruthenium(II) ($Ru(bpy)_3{^{2+}}$) in 300 mM $H_2SO_4$ solution with and without sodium dodecyl sulfate (SDS) is studied. In the presence of SDS, $E_{pa}$ of $Ru(bpy)_3{^{2+}}$ shifts to positive direction compared to the SDS free case. The intersection of two lines on ${\Delta}E_p$ vs. -log[SDS] plot is measured as a critical micelle concentration (CMC), which is 3.67 mM SDS.

  • PDF

Enhanced Electrogenerated Chemiluminescence of Tris (2,2'-bipyridyl) Ruthenium (II)-$S_2O_8^{2-}$ System by Sodium Dodecyl Sulfate

  • Kang, Sung-Chul;Oh, Soo-Il;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.505-508
    • /
    • 1990
  • The electrochemical reduction and electrogenerated chemiluminescence (ECL) of $Ru(bpy)_3^{2+}-S_2O_8^{2-}\;in\;CH_3CN-H_2O$ solution were studied in the presence of sodium dodecyl sulfate (SDS) as an anionic surfactant. SDS enhanced the ECL and the fluorescence intensities and lengthened the duration of ECL due to the solubilization of reactants and possibly to the stabilization of ECL intermediates in the SDS micellar environment.

Electrogenerated Chemiluminescence Sensor Based on Tris(2,2'-bipyridyl) ruthenium(II) Immobilized in the Composite Film of Multi-walled Carbon Nanotube/Sol-gel Zinc oxide/Nafion

  • Choi, Eun-Jung;Kang, Chang-Hoon;Choi, Han-Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2387-2392
    • /
    • 2009
  • A composite film of multi-walled carbon nanotube (MWCNT)/sol-gel-derived zinc oxide(ZnO)/Nafion has been utilized as an efficient immobilization matrix for the construction of a highly sensitive and stable tris(2,2'-bipyridyl) ruthenium(II) (Ru(${bpy)_3}^{2+})$ electrogenerated chemiluminescence (ECL) sensor. The electrochemical and ECL behaviors of Ru(${bpy)_3}^{2+})$ ion-exchanged into the composite film were strongly dependent upon the sol-gel preparation condition, the amount of MWCNT incorporated into the ZnO/Nafion composite film, and the buffer solution pH. The synergistic effect of MWCNTs and ZnO in the composite films increased not only the sensitivity but also the long-term stability of the ECL sensor. The present ECL sensor based on the MWCNT/ZnO/Nafion gave a linear response ($R^2$ = 0.999) for tripropylamine concentration from 500 nM to 1.0 mM with a remarkable detection limit (S/N = 3) of 15 nM. The present ECL sensor showed outstanding long-term stability (94% initial signal retained for 5 weeks). Since the present ECL sensor exhibits large response towards NADH, it could be applied as a transduction platform for the ECL biosensor in which the NADH is produced from the dehydrogenase-based enzymatic reaction in the presence of NA$D^+$ cofactor.

Enhanced Electrical Properties of Light-emitting Electrochemical Cells Based on PEDOT:PSS incorporated Ruthenium(II) Complex as a Light-emitting layer

  • Gang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyeon;Jo, Yeong-Ran;Hwang, Jong-Won;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.139-139
    • /
    • 2010
  • Ionic Transition Metal Complex based (iTMC) Light-emitting electrochemical cells (LEECs) have been drawn attention for cheap and easy-to-fabricate light-emitting device. LEEC is one of the promising candidate for next generation display and solid-state lighting applications which can cover the defects of current commercial OLEDs like complicated fabrication process and strong work-function dependent sturucture. We have investigated the performance characteristics of LEECs based on poly (3, 4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)-incorporated transition metal complex, which is tris(2, 2'-bipyridyl)ruthenium(II) hexafluorophosphate in this study. There are advantages using conductive polymer-incorporated luminous layer to prevent light disturbance and absorbance while light-emitting process between light-emitting layer and transparent electrode like ITO. The devices were fabricated as sandwiched structure and light-emitting layer was deposited approximately 40nm thickness by spin coating and aluminum electrode was deposited using thermal evaporation process under the vacuum condition (10-3Pa). Current density and light intensity were measured using optical spectrometer, and surface morphology changes of the luminous layer were observed using XRD and AFM varying contents of PEDOT:PSS in the Ruthenium(II) complex solution. To observe enhanced ionic conductivity of PEDOT:PSS and luminous layer, space-charge-limited-currents model was introduced and it showed that the performances and stability of LEECs were improved. Main discussions are the followings. First, relationship between film thickness and performance characteristics of device was considered. Secondly, light-emitting behavior when PEDOT:PSS layer on the ITO, as a buffer, was introduced to iTMC LEECs. Finally, electrical properties including carrier mobility, current density-voltage, light intensity-voltage, response time and turn-on voltages were investigated.

  • PDF