• Title/Summary/Keyword: tripod structure

Search Result 31, Processing Time 0.024 seconds

Optimal design of a portable structure under impact loading (충격부하를 받는 휴대용 구조물의 최적설계)

  • Oh, Deog-Su;Kim, Kwon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.804-809
    • /
    • 2001
  • Optimal design of a portable structure which supports impact loading is presented. The structure requires impact loading capability, stiffness and minimum weight for portability. A collapsible tripod structure with locking mechanism is suggested. Taguchi method has been used to identify the most important design variables and the initial design. Subsequent optimization yields additional weight reduction under stress and displacement constrains.

  • PDF

A Measure for Improvement in Accuracy by Performance Evaluation of a DPRMs (말뚝 변위 측정시스템의 진동 평가에 의한 정확도 향상 대책)

  • Choi Youngsam;Chung Jintai;Lee Kyeyoung;Han Changsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1653-1659
    • /
    • 2005
  • In this study, the performance of a DPRMs is evaluated and the measurement precision for the pile driving is presented. The DPRMs is a visual-measurement system for the pile rebound and the penetration movement using a high speed line-scan camera. The DPRMs generates the measurement deviation. It is caused by the strong impact for the pile driving. To reduce it, the vibration signal analysis about the pile driving is performed. As a result, it is confirmed that the tilting frequency of a camera-tripod structure corresponding to excitation frequency range of the ground is under 40Hz. Through the structure modification, the camera-tripod structure is redesigned to the model being free itself from the excitation frequency range of the ground. By the verification testing about the improvement effects, it is inspected that the tilting and measurement deviation of the redesigned DPRMs are reduced.

Microstructural Characteristics of Rapidly Solidified 304 Stainless Steel Powders Produced by Gas Atomization

  • Kim, Yeon-Wook
    • Journal of Korea Foundry Society
    • /
    • v.21 no.3
    • /
    • pp.187-191
    • /
    • 2001
  • 가스분무장치를 이용하여 제조된 304 stainless steel 분말의 미세응고조직 특성을 투과전자현미경으로 관찰하였다. 분말이 sandwich 현상으로 존재하도록 구리로 전기도금한 후 tripod jig 를 이용하여 기계적 연마하여 TEM 시편을 제작하였다. 이 방법으로 제조된 TEM 시편은 넓은 지역에서 200KV 로 가속된 전자가 투과하기에 충분히 얇았으며, 작은 분말의 경우에는 분말 전체를 관찰할 수 있었다. 제한시야회절법(SADP)을 이용하여 100 ${\mu}m$ 이하 분말의 결정구조를 조사한 결과에 따르면 가스분무법으로 급냉응고된 대부분의 분말은 austenite 상으로 응고되었으며, 모든 austenite 분말은 크기에 관계없이 쌍정조직 (twinstructure)이 발견되었으며 그 밀도 역시 아주 높았다. 그러나 직경이 2 ${\mu}m$ 이하의 분말에서는 큰 과냉 (supercooling) 효과에 의하여 준결정상인 bcc 상으로 응고됨을 발견하였다.

  • PDF

Evaluation of Overturning Stability for Preventing Safety Accidents Caused by Ladder Work in Landscape Construction and Management - For the Tripod Support Portable Ladders Used in Korea - (조경시공·관리에서 사다리 안전사고 예방을 위한 전도 안정성 평가 - 국내에서 사용되고 있는 삼각지지형 이동식 사다리를 대상으로 -)

  • Kim, Eun-Il;Kwon, Yoon-Ku;Lee, Gi-Yeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.5
    • /
    • pp.1-12
    • /
    • 2023
  • This study evaluated the overturning stability of portable tripod ladders used for high-altitude work such as tree management and pruning work in landscaping construction and management. Portable tripod ladders, which are included in general mobile or portable ladders frequently used in industrial sites, are supported in a triangular support structure, not a 4-point support like common A-type Ladders. In addition, since the working height is more than twice that of a mobile or portable ladder, the possibility of an overturning accident that threatens the safety of workers with a fall accident is high. Therefore, based on the overturning stability test specified in ANSI-ASC A14.7 and EN 131-Part 7, which are related standards for about 130 types of portable tripod ladders sold and used in Korea. An equation to calculate each moment according to working height was derived. Then, each calculated moment was compared to evaluate the safety factor for overturning and stability. As a result of the overturning stability evaluation according to each standard, when the provisions of EN 131-Part 7 were applied, portable tripod ladders with 8 steps in the rear direction and 6 steps or more in the side direction were evaluated as unstable against overturning, but according to ANSI-ASC A14.7 regulations. It was evaluated that the stability against overturning was secured in all directions and number of steps.

Development of Flexible and Lightweight Robotic Hand with Tensegrity-Based Joint Structure for Functional Prosthesis (기능형 의수를 위한 텐스그리티 관절 구조 기반의 유연하고 가벼운 로봇 핸드 개발)

  • Geon Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • This paper presents an under-actuated robotic hand inspired by the ligamentous structure of the human hand for a prosthetic application. The joint mechanisms are based on the concept of a tensegrity structure formed by elastic strings. These rigid bodies and elastic strings in the mechanism emulate the phalanx bones and primary ligaments found in human finger joints. As a result, the proposed hand inherently possesses compliant characteristics, ensuring robust adaptability during grasping and when interacting with physical environments. For the practical implementation of the tensegrity-based joint mechanism, we detail the installation of the strings and the routing of the driving tendon, which are related to extension and flexion, respectively. Additionally, we have designed the palm structure of the proposed hand to facilitate opposition and tripod grips between the fingers and thumb, taking into account the transverse arch of the human palm. In conclusion, we tested a prototype of the proposed hand to evaluate its motion and grasping capabilities.

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

Design of Substructure for 3MW Offshore Wind Turbine Demonstrator Project (3MW 해상풍력발전기 기초구조물 설계)

  • Byun, Chuljin;Joo, Wandon;Jeong, Seokyong;Park, Jongpo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.185.1-185.1
    • /
    • 2010
  • The 3MW OWEC demonstrator project in Korea will be the first offshore wind project with Korean turbine, Doosan WinDS3000, and constructed on the north-eastern sea of Jeju Island as the water depth of 15m. Integrated loadings of wind and wave are investigated to describe a design loads for both extreme and fatigue conditions using GH-Bladed. A dynamic behaviour of substructure strongly affects a substructure loadings. The jacket structure is designed in accordance with DNV guidelines. The results of this paper show overall design process of offshore substructure as a complex jacket concept and this design process can be implemented on a design of monopile and tripod structures.

  • PDF

Estimation of Dynamic Characteristics of an Offshore Meteorological Tower using Ambient Measurements (상시계측을 통한 해상기상탑의 동적특성 평가)

  • Gyehee Lee;Le Quoc Cuong;Daejin Kwag
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.91-99
    • /
    • 2023
  • In research conducted on a southwestern Korean offshore meteorological tower, acceleration datasets were gathered over half a year with time-history sensors. To enhance data credibility, a parallel measurement system was used for verification. A model of the tower was configured using beam elements, and with modifications accounting for added stiffness from auxiliary structures. Ground interactions were considered as calibrated springs based on soil layer properties. The tower's dynamic attributes and mass sensitivity were discerned using eigenvalue analysis. The structural natural frequency was consistent, with variations primarily due to new equipment adding approximately 1400 kgs. With free vibration damping assumptions, a damping ratio of roughly 1 % was derived.

Comparison of LCOE of the Southwest Offshore Wind Farm According to Types and Construction Methods of Supporting Structures (해상풍력 지지구조물 형식 및 시공 방법에 따른 서남해 해상풍력실증단지의 균등화발전비용 비교)

  • SeoHo Yoon;Sun Bin Kim;Gil Lim Yoon;Jin-Hak Yi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.3
    • /
    • pp.57-66
    • /
    • 2023
  • In order to understand the economic feasibility of an offshore wind farm, this paper analyzed the differences in LCOE (levelized cost of energy) according to the support type and construction method of the substructure in terms of LCOE and sensitivity analysis was conducted according to the main components of LCOE. As for the site to be studied, the Southwest Offshore Wind Farm was selected, and the capital expenditures were calculated according to the size of the offshore wind farm and the installation unit. As a result of the sensitivity analysis, major components showed high sensitivity to availability, turbine related cost, weighted average cost of capital and balance of system related cost. Moreover, the post-piling jacket method, which was representatively applied to the substructure of the offshore wind farm in Korea, was selected as a basic plan to calculate the capital expenditures, and then the capital expenditures of the pre-piling jacket method and the tripod method were calculated and compared. As a result of analyzing the LCOE, it was confirmed that the pre-piling jacket method of the supporting structure lowers the LCOE and improves economic feasibility as the installation number of turbines increases.

A Study on Design of Offshore Meteorological Tower (해상기상탑 설계에 관한 연구)

  • Moon, Chae-Joo;Chang, Young-Hak;Park, Tae-Sik;Jeong, Moon-Seon;Joo, Hyo-Joon;Kwon, O-Soon;Kwag, Dae-Jin;Jeong, Gwon-Seong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.60-65
    • /
    • 2014
  • A meteorological(met) tower is the first structure installed during the planning stages of offshore wind farm. The purpose of this paper is to design the met tower with tripod bucket type support structure and to install the sensors. The support structure consist of a central steel shaft connected to three cylindrical steel suction buckets which is more cheaper than monopile or jacket type. And the remote wind condition sensors and marine monitoring equipment, including adcp, pressure type tide gauge, wave height sensors, and scour sensors, remote power supply are installed. The manufactured met tower constructed on sea area which is in front of Gasa island. All of functions of met tower showed normal operation conditions and the wind data got by remote data collection system successfully.