• Title/Summary/Keyword: trimethyl amine

Search Result 28, Processing Time 0.022 seconds

Adsorption of Amine and Sulfur Compounds by Iron Phthalocyanine Derivatives (철 프탈로시아닌 유도체에 의한 아민 및 황 화합물의 흡착)

  • Lee, Jeong-Se;Park, Jin-Do;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.575-584
    • /
    • 2007
  • The adsorption capability of iron phthalocyanine derivatives were investigated by means of X-ray diffractometor (XRD), IR (infrared) spectroscopy, scanning electron microscopy (SEM) and temperature programmed desorption (TPD). According to TPD results, iron phthalocyanine derivatives showed two desorption peaks at low temperature ($100{\sim}150^{\circ}C$) and high temperature ($350{\sim}400^{\circ}C$) indicating that there were two kinds of acidities. Tetracarboxylic iron phthalocyanine (Fe-TCPC) have a stronger desorption peak (chemical adsorption) at the high temperature and a weaker desorption peak (physical adsorption) at the low temperature than iron phthalocyanine (Fe-PC). The specific surface areas of Fe-TCPC and Fe-PC were $26.46\;m^2/g\;and\;11.77\;m^2/g$, respectively. The pore volumes of Fe-TCPC and Fe-PC were $0.14\;cm^3/g\;and\;0.06\;cm^3/g$, respectively. The adsorption capability of triethyl amine calculated by breakthrough curve at 220 ppm of equilibrium concentration was 29.2 mmoL/g for Fe-TCPC and 0.8 mmoL/g for Fe-PC. The removal efficiency of dimethyl sulfide of Fe-TCPC and Fe-PC in batch experiment of 225 ppm of initial concentration were 44.9% and 28.9%, respectively. The removal efficiency of trimethyl amine of Fe-TCPC and Fe-PC in batch experiment of 118 ppm of initial concentration were approximately 100.0% and 33.9%, respectively.

Seasonal Analysis of Odorous Compounds Emitted From the Chemical Plant (계절별 악취물질의 배출량 분석 및 평가에 관한 연구)

  • Cho, Jae-Sung;Kim, Jae-Woo
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • In this study, the concentrations of offensive odorous compounds seasonally emitted from the chemical plant at Chongju industrial complex in Korea were determined by the analytical methods of gas chromatography, high performance liquid chromatography and uv/vis spectroscopy. The kinds of offensive odorous compounds examined are formaldehyde, acetaldehyde, butyl aldehyde, propion aldehyde, n-valeric aldehyde, iso-valeric aldehyde, hydrogen sulfide, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, trimethyl amine and ammonia. The seasonally emission levels of all odorous compounds except dimethyl sulfide at 13 sampling points of plant were lower than those of the regulation standard levels of the industrial complex in Korea. The levels were the highest in June, and lowest in December. The propion aldehyde and iso-valeric aldehyde in June and December, butyl aldehyde in December, and n-valeric aldehyde were not detected in all the three seasons at any sampling points of the plant examined. But in June, dimethyl sulfide was emitted up to 16 times than that of the regulation level.

Analysis of Offensive Odorous Compounds Emitted From the Chemical Plants (화학공장에서 배출되는 악취규제물질의 분석 및 평가)

  • Choi, Jae-Sung;Kim, Jae-Woo
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • The concentrations of offensive odorous compounds emitted from the two chemical plants in Chongju and Yeosu industrial complex in Korea were determined by uv/vis spectroscopy, gas chromatography, and high performance liquid chromatography. The odorous compounds examined in this study are ammonia, trimethyl amine, formaldehyde, acetaldehyde, propion aldehyde, butyl aldehyde, n-valeric aldehyde, iso-valeric aldehyde, hydrogen sulfide, methyl mercaptan, dimethyl sulfide and dimethyl disulfide. The concentrations of those were determined from the 10 sampling points of the two plants, respectively. The emission concentrations of all odorous com-pounds examined in the two plants were lower than those of the regulation standard levels of industrial complex in Korea, respectively. The propion aldehyde, n-valeric aldehyde, methyl mercaptan and dimethyl disulfide in Chongju and Yeosu plants, and butyl aldehyde and iso-valeric aldehyde in Yeosu plant were not detected at any sampling points examined.

Electrical and Optical Characteristics of QD-LEDs Using InP/ZnSe/ZnS Quantum Dot (InP/ZnSe/ZnS 양자점을 이용한 QD-LED의 전기 및 광학적 특성)

  • Choi, Jae-Geon;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.151-155
    • /
    • 2014
  • We have developed quantum dot light emitting diodes (QD-LEDs) using a InP/ZnSe/ZnS multi-shell QD emission layer. The hybrid structure of organic hole transport layer/QD/organic electron transport layer was used for fabricating QD-LEDs. Poly(4-butylphenyl-diphenyl-amine) (poly-TPD) and tris[2,4,6-trimethyl-3-(pyridin-3-yl)phenyl]borane (3TPYMB) molecules were used as hole-transporting and electron-transporting layers, respectively. The emission, current efficiency, and driving characteristics of QD-LEDs with 50, 65 nm thick 3TPYMB layers were investigated. The QD-LED with a 50 nm thick 3TPYMB layer exhibited a maximum current efficiency of 1.3 cd/A.

Modulation of the Bacterial Mutagenicity for food-borne Mutagens by Hexane Fraction from Saururus chinesis (Lour.) Bail (삼백초 Hexane 분획물의 Heterocyclic Amine 돌연변이성 조정효과)

  • Lee, Sang-Ho;Park, Cheol-U;Park, Gyeong-A;Lee, Yeong-Chun;Kim, Mu-Nam;Ha, Yeong-Rae
    • Environmental Mutagens and Carcinogens
    • /
    • v.18 no.1
    • /
    • pp.26-31
    • /
    • 1998
  • Antimutagenic activity of Saururus chinesis (Lour.) Bail was investigated for food-borne mutagens using S. typhimurium TA98. Methanol extract from Saururus Chinesis (Lour.) Bail was fractionated into hexane, chloroform, ethylacetate and butanol fractions, followed by determination of antimutagenic activity for food-borne mutagenic heterogenic amines (HCA). The hexane fraction exhibited a strong antimutagenic activity for 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQ), 2-amino-3,4-dimethyl-3H-imidazo[4,5-f]quinoline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 3-amino-1-methyl-5H-pyroid[4,3-b]indole acetate (Trp-2-A); however its fraction rather enhanced the bacterial mutagenicity of 2-amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinozaline (4,8-diMeIQx) and 2-amino-3,7,8-trimethyl-3H-imidazo[4,5-f]quinoxline (7,8-diMeIQx). Active principle in the fraction was found to be two major compounds (${\gamma}$-crene B and epi-bicyclosesquiphellandrane) and 6 minor compounds (${\delta}$-caryophyllene, ${\gamma}$-elemene, ${\beta}$-cabebene, ${\delta}$-cadinene, ${\delta}$-selinene, and patchoulene). Modulation effect for the mutagenic activity of the food-borne mutagenic HCA by the fraction might be derived from a cumulative effect of each individual compounds. Hence, this hexane fraction might be use to reduce the production of mutagenic HCA during cooking process of protein-rich foods.

  • PDF

Analysis of Volatile Organic Compounds by GC/MS with the Thermal Desorber and Characterization of the Major Components Attributing to Malodor -An Analytical Example of the Odor Emitted from the Compost of Food Waste- (흡착 열탈착 장치와 GC/MS를 이용한 휘발성 유기화합물의 분석과 악취원인 성분의 예측 - 음식물 퇴비화 과정에서 발생되는 악취분석의 예 -)

  • Yu, Mee-Seon;Yang, Sung-Bong;Ahn, Jeong-Soo
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.80-86
    • /
    • 2002
  • The simultaneous analysis of the odorous compounds designated by law in Korea and Japan was examined with the thermal desorber gas chromatography-mass spectrometry using one column. The approximate concentrations of trimethyl amine, acetaldehyde, methyl mercaptan and dimethyl sulfide were estimated. Styrene, dimethyl disulfide, propionaldehyde, n-butyl aldehyde, i-butyl aldehyde, n-valeraldehyde, i-valeraldehyde, ethyl acetate, toluene, xylene, methyl i-butyl ketone and i-butanol were detected at concentrations of the detection limits of their threshold values. As a typical example of simultaneous analysis of the odorous compounds, the volatile organic compounds emitted from compost procedure of food waste were concentrated and analyzed with thermal desorber/GC/MSD, and major malodorous compounds were estimated from the concentrations and threshold values of the detected components. From the result of analysis, 34 compounds were confirmed and among them, trimethyl amine, i-valeraldehyde, methyl mercaptan, methyl allyl sulfide, dimethyl sulfide, acetaldehyde, ethanol, n-butyaldehyde were expected to attribute to the odor in order of strength.

Effect of Reducing the Odor of Food Wastes Using Effective Microorganism (EM) (유용미생물을 활용한 음식물쓰레기의 악취저감 효과)

  • Kim, Ha-Na;Yim, Bongbeen;Kim, Sun-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.162-168
    • /
    • 2016
  • The aim was to investigate the effect of reducing the odorous and complex odor released during the decomposition of food wastes using effective microorganism (EM) as a function of time at $20^{\circ}C$ and $35^{\circ}C$. The variation of total microbial counts and dominant species counts in EM and leachate produced during food wastes decomposition was also observed. In general, the cumulative concentration of sulfur compounds ($H_2S$, $CH_3SH$) and complex odor released during food wastes decomposition increased with increasing elapsed time. The nitrogen compounds ($NH_3$, trimethyl amine), however, was not observed in all samples. The addition of EM in food wastes resulted in the reduction of concentration of sulfur compounds and complex odor, in spite of the increase of $CH_3CHO$ concentration. The dominant microbial species detected in EM were Lactobacillus species(Lactobacillus rhamnosus and Lactobacillus casei). In the leachate produced during food wastes decomposition, however, the various microbial community alternative to that detected in EM was observed. The EM could be potentially useful as a tools for reducing odor induced from the food waste decomposition process.

Adsorption of Amine and Sulfur Compounds by Cobalt Phthalocyanine Derivatives (코발트 프탈로시아닌 유도체에 의한 아민 및 황 화합물의 흡착)

  • Lee, Jeong Se;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.592-598
    • /
    • 2007
  • The adsorption capability of cobalt phthalocyanine derivatives was investigated by means of X-ray diffractometor (XRD), FT-IR spectroscopy, scanning electron microscopy (SEM), and temperature programmed desorption (TPD). According to TPD results for ammonia, cobalt phthalocyanine derivatives showed two desorption peaks at low temperature ($100{\sim}150^{\circ}C$) and high temperature ($350{\sim}400^{\circ}C$) indicating that there were two kinds of acidities. Tetracarboxylic cobalt phthalocyanine (Co-TCPC) has a stronger desorption peak (chemical adsorption) at high temperature and a weaker desorption peak (physical adsorption) at low temperature than cobalt phthalocyanine (Co-PC). The specific surface areas of Co-TCPC and Co-PC were 37.5 and $18.4m^2/g$, respectively. The pore volumes of Co-TCPC and Co-PC were 0.17 and $0.10cm^3/g$, respectively. The adsorption capability of triethyl amine calculated by breakthrough curve at 120 ppm of equilibrium concentration was 24.3 mmol/g for Co-TCPC and 0.8 mmol/g for Co-PC. The removal efficiencies of dimethyl sulfide of Co-TCPC and Co-PC in batch experiment of 225 ppm of initial concentration were 92 and 18%, respectively. The removal efficiencies of trimethyl amine of Co-TCPC and Co-PC in batch experiment of 118 ppm of initial concentration were 100 and 17%, respectively.

Composition and Cytotoxicity of Essential Oil from Korean rhododendron (Rhododendon mucronulatum Turcz. var. ciliatum Nakai) (털진달래(Rhododendon mucronulatum Turcz. var. ciliatum Nakai) 정유의 성분분석과 독성평가)

  • Park, Yu-Hwa;Kim, Song-Mun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.233-237
    • /
    • 2008
  • The essential oil was obtained from the aerial part of Rhododendon mucronulatum Turcz. var. ciliatum Nakai by steam distillation, samples were collected by headspace (HS) and solid-phase microextraction (SPME) methods, and the compositions of the oil were analyzed by gas chromatography-mass spectrometry (GC-MS). Nineteen constituents were identified from the essential oil: 15 carbohydrates, 3 alcohols, and 1 acetates. Major constituents were 2-${\beta}$-pinene (16.1%), camphene (11.9%), ${\delta}$-3-carene (11.4%), d,l-limonene (9.5%), and ${\gamma}$-terpinene (9.5%). By SPME extraction, seventeen constituents were identified: 13 hydrocarbons, 1 alcohol, 1 nitrogen-containing compound, 1 acetate, and 1 amine. Major constituents of the SPME-extracted sample were cam phene (19.6%), 2-${\beta}$-pinene (18.0%), ${\delta}$-3-carene (17.4%), trimethyl hydrazine (9.7%), ${\gamma}$-terpinene (8.5%), and d,l-limonene (5.5%). By HS extraction, thirteen constituents were identified: 11 hydrocarbons, 1 alcohol, and 1 nitrogen-containing compound. Major constituents of the HS-extracted sample were camphene (25.8%), ${\delta}$-3-carene (24.8%), 2-${\beta}$-pinene (20.2%), d,l-limonene (5.4%), tricyclene (5.1%) and trimethyl hydrazine (4.6%). The fragrance of the essential oil was coniferous, balsamic, and woody, and the $IC_{50}$ value of the essential oil was 0.030 ${\mu}g/mg$ in MTT assay using UaCaT keratinocyte cell line.

Characterization of the Aroma of Salt-fermented Anchovy Sauce Using Solid Phase Microextraction-Gas Chromatography-Olfactometry Based on Sample Dilution Analysis

  • Kim, Hyung-Joo;Baek, Hyung-Hee
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.238-241
    • /
    • 2005
  • Aroma-active compounds were evaluated from salt-fermented anchovy sauce by solid phase microextraction-gas chromatography-olfactometry (SPME-GC-O) based on sample dilution analysis (SDA). SPME extract from carboxen/polydimethylsiloxane (CAR/PDMS) fiber was the most similar to the original odor of salt-fermented anchovy sauce used for this experiment, followed by divinylbenzene/CAR/PDMS (DVB/CAR/PDMS) fiber. Because salt-fermented anchovy sauce contains 23% NaCl, NaCl concentration of diluent was considered when salt-fermented anchovy sauce was serially diluted. Linear relationship between GC response and sample concentration was observed when diluted with 23% NaCl solution, whereas not observed when diluted with deodorized distilled water. Eleven and 16 aroma-active compounds were detected by SPME-GC-O based on SDA using CAR/PDMS and DVB/CAR/PDMS fibers, respectively. Butanoic acid and 3-methyl butanoic acid showed the highest ${\log}_2SD$ factors for CAR/PDMS and DVB/CAR/PDMS fibers. Dimethyl trisulfide, methional, trimethyl amine, 1-penten-3-ol, and acetic acid were also detected as potent aroma-active compounds.