• Title/Summary/Keyword: trigonometric functions

Search Result 136, Processing Time 0.025 seconds

Embedded Hardware Implementation of an FPGA Based Nonlinear PID Controller for the ROBOKER Arm (ROBOKER 팔의 제어를 위한 FPGA 기반 비선형 제어기의 임베디드 하드웨어 구현)

  • Kim, Jeong-Seob;Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1153-1159
    • /
    • 2007
  • This paper presents the hardware implementation of nonlinear PID controllers for the ROBOKER humanoid robot arms. To design the nonlinear PID controller on an FPGA chip, nonlinear functions as well as the conventional PID control algorithm have to be implemented by the hardware description language. Therefore, nonlinear functions such as trigonometric or exponential functions are designed on an FPGA chip. Simulation studies of the position control of humanoid arms are conducted and results are compared. Superior performances by the nonlinear PID controllers are confirmed when disturbances are present. Experiments of humanoid robot arm control tasks are conducted to confirm the performance of our hardware design and the simulation results.

Bending Assessment of Antisymmetric Angle-ply Composite Sandwich Plates with Various Shear Deformation Functions (전단변형함수에 따른 역대칭 앵글-플라이 복합면재를 갖는 샌드위치판의 휨거동 평가)

  • Park, Weon-Tae;Chun, Kyoung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5347-5356
    • /
    • 2011
  • In this paper, we compared various shear deformation functions for modelling anti-symmetric composite sandwich plates discretized by a mixed finite element method based on the Lagrangian/Hermite interpolation functions. These shear deformation theories uses polynomial, trigonometric, hyperbolic and exponential functions through the thickness direction, allowing for zero transverse shear stresses at the top and bottom surfaces of the plate. All shear deformation functions are compared with other available analytical/3D elasticity solutions, As a result, reasonable accuracy for investigated problems are predicted. Particularly, The present results show that the use of exponential shear deformation theory provides very good solutions for composite sandwich plates.

ON FUNCTIONS DEFINED BY ITS FOURIER TRANSFORM

  • Shim, Hong-Tae;Kwon, Joong-Sung
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.561-570
    • /
    • 2012
  • Fourier transform is well known for trigonometric systems. It is also a very useful tool for the construction of wavelets. The method of constructing wavelets has evolved as times went by. We review some methods. Then we do some calculations on wavelets defined by its Fourier transform.

Polynomial Boundary Treatment for Wavelet Regression

  • Oh Hee-Seok;Naveau Philppe;Lee GeungHee
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.27-32
    • /
    • 2000
  • To overcome boundary problems with wavelet regression, we propose a simple method that reduces bias at the boundaries. It is based on a combination of wavelet functions and low-order polynomials. The utility of the method is illustrated with simulation studies and a real example. Asymptotic results show that the estimators are competitive with other nonparametric procedures.

  • PDF

On Spherical Trigonometry (구면삼각법에 관한 소고)

  • KOH Youngmee
    • Journal for History of Mathematics
    • /
    • v.36 no.2
    • /
    • pp.21-34
    • /
    • 2023
  • Spherical trigonometry refers to the geometry related to spherical triangles. It has been an important tool for studying astronomy since ancient times. In trigonometry, concepts such as trigonometric functions naturally emerge from the relationship between arcs and chords of a circle. In this paper, we briefly examine the origin of spherical trigonometry. To introduce the basics of spherical trigonometry, we present fundamental and important theorems such as Menelaus's theorem, the law of sines and the law of cosines on a sphere, along with their proofs. Furthermore, we discuss the educational value and potential applications of spherical trigonometry.

ON THE SUPERSTABILITY FOR THE p-POWER-RADICAL SINE FUNCTIONAL EQUATION

  • Gwang Hui Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.801-812
    • /
    • 2023
  • In this paper, we investigate the superstability for the p-power-radical sine functional equation $$f\(\sqrt[p]{\frac{x^p+y^p}{2}}\)^2-f\(\sqrt[p]{\frac{x^p-y^p}{2}}\)^2=f(x)f(y)$$ from an approximation of the p-power-radical functional equation: $$f(\sqrt[p]{x^p+y^p})-f(\sqrt[p]{x^p-y^p})={\lambda}g(x)h(y),$$ where p is an odd positive integer and f, g, h are complex valued functions. Furthermore, the obtained results are extended to Banach algebras.

Comparison of Various Shear Deformation Functions for Laminated Composite/Sandwich Plates (복합적층 및 샌드위치판 전단변형함수에 관한 상호비교연구)

  • Park, Won-Tae;Chang, Suk-Yoon;Chun, Kyoung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper, we used various shear deformation functions for modelling isotropic, symmetric composite and sandwich plates discretized by a mixed finite element method based on the Lagrangian/Hermite interpolation functions. These shear deformation theories uses polynomial, trigonometric, hyperbolic and exponential functions through the thickness direction, allowing for zero transverse shear stresses at the top and bottom surfaces of the plate. All shear deformation functions are compared with other available analytical/3D elasticity solutions, are predicted the reasonable accuracy for investigated problems. Particularly, The present results show that the use of exponential shear deformation theory (Karama et al. 2003; Aydogu 2009) provides very good solutions for composite and sandwich plates.

  • PDF

Effect of higher order terms of Maclaurin expansion in nonlinear analysis of the Bernoulli beam by single finite element

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Mirsalehi, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.949-966
    • /
    • 2016
  • The second order analysis taking place due to non-linear behavior of the structures under the mechanical and geometric factors through implementing exact and approximate methods is an indispensible issue in the analysis of such structures. Among the exact methods is the slope-deflection method that due to its simplicity and efficiency of its relationships has always been in consideration. By solving the differential equations of the modified slope-deflection method in which the effect of axial compressive force is considered, the stiffness matrix including trigonometric entries would be obtained. The complexity of computations with trigonometric functions causes replacement with their Maclaurin expansion. In most cases only the first two terms of this expansion are used but to obtain more accurate results, more elements are needed. In this paper, the effect of utilizing higher order terms of Maclaurin expansion on reducing the number of required elements and attaining more rapid convergence with less error is investigated for the Bernoulli beam with various boundary conditions. The results indicate that when using only one element along the beam length, utilizing higher order terms in Maclaurin expansion would reduce the relative error in determining the critical buckling load and kinematic parameters in the second order analysis.

Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory

  • Bekkaye, Tahar Hacen Lamine;Fahsi, Bouazza;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.439-450
    • /
    • 2020
  • In this research, bending and buckling analyses of porous functionally graded (FG) plate under mechanical load are presented. The properties of the FG plate vary gradually across the thickness according to power-law and exponential functions. The material imperfection is considered to vary depending to a logarithmic function. The plate is modeled by a refined trigonometric shear deformation theory where the use of the shear correction factor is unnecessary. The governing equations of the FG plate are derived via virtual work principle and resolved via Navier solutions. The accuracy of the present model is checked by comparing the obtained results with those found in the literature. The various effects influencing the stresses, displacements and critical buckling loads of the plate are also examined and discussed in detail.