• Title/Summary/Keyword: trigonometric deformation theory

Search Result 60, Processing Time 0.027 seconds

Elastic stability of functionally graded graphene reinforced porous nanocomposite beams using two variables shear deformation

  • Fortas, Lahcene;Messai, Abderraouf;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.31-54
    • /
    • 2022
  • This paper is concerned with the buckling behavior of functionally graded graphene reinforced porous nanocomposite beams based on the finite element method (FEM) using two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element, and then the critical buckling load is calculated with different porosity distributions and GPL dispersion patterns. After a convergence and validation study to verify the accuracy of the present model, a comprehensive parametric study is carried out, with a particular focus on the effects of weight fraction, distribution pattern of GPL reinforcements on the Buckling behavior of the nanocomposite beam. The effects of various structural parameters such as the dispersion patterns for the graphene and porosity, thickness ratio, boundary conditions, and nonlocal and strain gradient parameters are brought out. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams, and the results allows to identify the most effective way to achieve improved buckling behavior of the porous nanocomposite beam.

The effect of visco-Pasternak foundation on the free vibration behavior of exponentially graded sandwich plates with various boundary conditions

  • Fatima, Bounouara;Salem Mohammed, Aldosari;Abdelbaki, Chikh;Abdelhakim, Kaci;Abdelmoumen Anis, Bousahla;Fouad, Bourada;Abdelouahed, Tounsi;Kouider Halim, Benrahou;Hind, Albalawi;Abdeldjebbar, Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.367-383
    • /
    • 2023
  • In this investigation, an improved integral trigonometric shear deformation theory is employed to examine the vibrational behavior of the functionally graded (FG) sandwich plates resting on visco-Pasternak foundations. The studied structure is modelled with only four unknowns' variables displacements functions. The simplicity of the developed model being in the reduced number of variables which was made with the help of the use of the indeterminate integral in the formulation. The current kinematic takes into consideration the shear deformation effect and does not require any shear correction factors as used in the first shear deformation theory. The equations of motion are determined from Hamilton's principle with including the effect of the reaction of the visco-Pasternak's foundation. A Galerkin technique is proposed to solve the differentials governing equations, which enables one to obtain the semi-analytical solutions of natural frequencies for various clamped and simply supported FG sandwich plates resting on visco-Pasternak foundations. The validity of proposed model is checked with others solutions found in the literature. Parametric studies are performed to illustrate the impact of various parameters as plate dimension, layer thickness ratio, inhomogeneity index, damping coefficient, vibrational mode and elastic foundation on the vibrational behavior of the FG sandwich plates.

Free and forced vibration analysis of FG-CNTRC viscoelastic plate using high shear deformation theory

  • Mehmet Bugra Ozbey;Yavuz Cetin Cuma;Ibrahim Ozgur Deneme;Faruk Firat Calim
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.413-426
    • /
    • 2024
  • This paper investigates the dynamic behavior of a simply supported viscoelastic plate made of functionally graded carbon nanotube reinforced composite under dynamic loading. Carbon nanotubes are distributed in 5 different shapes: U, V, A, O and X, depending on the shape they form through the thickness of the plate. The displacement fields are derived in the Laplace domain using a higher-order shear deformation theory. Equations of motion are obtained through the application of the energy method and Hamilton's principle. The resulting equations of motion are solved using Navier's method. Transforming the Laplace domain displacements into the time domain involves Durbin's modified inverse Laplace transform. To validate the accuracy of the developed algorithm, a free vibration analysis is conducted for simply supported plate made of functionally graded carbon nanotube reinforced composite and compared against existing literature. Subsequently, a parametric forced vibration analysis considers the influence of various parameters: volume fractions of carbon nanotubes, their distributions, and ratios of instantaneous value to retardation time in the relaxation function, using a linear standard viscoelastic model. In the forced vibration analysis, the dynamic distributed load applied to functionally graded carbon nanotube reinforced composite viscoelastic plate is obtained in terms of double trigonometric series. The study culminates in an examination of maximum displacement, exploring the effects of different carbon nanotube distributions, volume fractions, and ratios of instantaneous value to retardation times in the relaxation function on the amplitudes of maximum displacements.

Free vibration analysis of angle-ply laminated composite and soft core sandwich plates

  • Sahla, Meriem;Saidi, Hayat;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.663-679
    • /
    • 2019
  • In this work, a simple four-variable trigonometric shear deformation model with undetermined integral terms to consider the influences of transverse shear deformation is applied for the dynamic analysis of anti-symmetric laminated composite and soft core sandwich plates. Unlike the existing higher order theories, the current one contains only four unknowns. The equations of motion are obtained using the principle of virtual work. The analytical solution is determined by solving the eigenvalue problem. The influences of geometric ratio, modular ratio and fibre angle are critically evaluated for different problems of laminated composite and sandwich plates. The eigenfrequencies obtained using the current theory are verified by comparing the results with those of other theories and with the exact elasticity solution, if any.

Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams

  • Aicha Bessaim;Mohammed Sid Ahmed Houari;Smain Bezzina;Ali Merdji;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.731-738
    • /
    • 2023
  • This article presents an analytical approach to explore the bending behaviour of of two-dimensional (2D) functionally graded (FG) nanobeams based on a two-variable higher-order shear deformation theory and nonlocal strain gradient theory. The kinematic relations are proposed according to novel trigonometric functions. The material gradation and material properties are varied along the longitudinal and the transversal directions. The equilibrium equations are obtained by using the virtual work principle and solved by applying Navier's technique. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the bending and stresses response of (2D) FG nanobeams to nonlocal length scale, strain gradient microstructure scale, material distribution and geometry.

An efficient numerical model for free vibration of temperature-dependent porous FG nano-scale beams using a nonlocal strain gradient theory

  • Tarek Merzouki;Mohammed SidAhmed Houari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • The present study conducts a thorough analysis of thermal vibrations in functionally graded porous nanocomposite beams within a thermal setting. Investigating the temperature-dependent material properties of these beams, which continuously vary across their thickness in accordance with a power-law function, a finite element approach is developed. This approach utilizes a nonlocal strain gradient theory and accounts for a linear temperature rise. The analysis employs four different patterns of porosity distribution to characterize the functionally graded porous materials. A novel two-variable shear deformation beam nonlocal strain gradient theory, based on trigonometric functions, is introduced to examine the combined effects of nonlocal stress and strain gradient on these beams. The derived governing equations are solved through a 3-nodes beam element. A comprehensive parametric study delves into the influence of structural parameters, such as thicknessratio, beam length, nonlocal scale parameter, and strain gradient parameter. Furthermore, the study explores the impact of thermal effects, porosity distribution forms, and material distribution profiles on the free vibration of temperature-dependent FG nanobeams. The results reveal the substantial influence of these effects on the vibration behavior of functionally graded nanobeams under thermal conditions. This research presents a finite element approach to examine the thermo-mechanical behavior of nonlocal temperature-dependent FG nanobeams, filling the gap where analytical results are unavailable.

Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model

  • Zakaria Belabed;Abdeldjebbar Tounsi;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed Bourada;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.233-252
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Structural RC computer aided intelligent analysis and computational performance via experimental investigations

  • Y.C. Huang;M.D. TuMuli Lulios;Chu-Ho Chang;M. Nasir Noor;Jen-Chung Shao;Chien-Liang Chiu;Tsair-Fwu Lee;Renata Wang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.253-261
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Flexural Vibration Analysis of Mindlin Rectangular Plates Having V-notches or Sharp Cracks (V노치 또는 예리한 균열을 가지는 Mindlin 직사각형 평판의 휨 진동해석)

  • Kim, Joo-Woo;Jung, Eui-Young;Kim, Seung-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.35-42
    • /
    • 2003
  • This paper provides the first known flexural vibration data for thick (Mindlin) rectangular plates having V-notches. The V-notch has bending moment and shear force singularities at its sharp corner due to the transverse vibratory bending motion. Based upon Mindlin plate theory, in which transverse shear deformation and rotary inertia effects are considered, the Ritz procedure is employed with a hybrid set of admissible functions assumed for the rotational and transverse vibratory displacements. This set includes: (1) a mathematically complete set of admissible algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained; and (2) an admissible set of Mindlin corner functions which account for the bending moment and shear force singularities at the sharp corner of the V-notch. Extensive convergence studies demonstrate the necessity of adding the Mindlin corner functions to achieve accurate frequencies for rectangular plates having sharp V-notches.

  • PDF

A new and simple HSDT for thermal stability analysis of FG sandwich plates

  • Menasria, Abderrahmane;Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.157-175
    • /
    • 2017
  • The novelty of this work is the use of a new displacement field that includes undetermined integral terms for analyzing thermal buckling response of functionally graded (FG) sandwich plates. The proposed kinematic uses only four variables, which is even less than the first shear deformation theory (FSDT) and the conventional higher shear deformation theories (HSDTs). The theory considers a trigonometric variation of transverse shear stress and verifies the traction free boundary conditions without employing the shear correction factors. Material properties of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law variation in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is employed to derive the governing equations as an eigenvalue problem. The validation of the present work is checked by comparing the obtained results the available ones in the literature. The influences of aspect and thickness ratios, material index, loading type, and sandwich plate type on the critical buckling are all discussed.