Browse > Article
http://dx.doi.org/10.12989/scs.2022.43.1.031

Elastic stability of functionally graded graphene reinforced porous nanocomposite beams using two variables shear deformation  

Fortas, Lahcene (MN2I2S Laboratory, Faculty of Science and Technology, Biskra University)
Messai, Abderraouf (University Ferhat Abbas SETIF 1, Department of Civil Engineering)
Merzouki, Tarek (LISV, University of Versailles Saint-Quentin)
Houari, Mohammed Sid Ahmed (Laboratoire d'Etude des Structures et de Mécanique des Matériaux, University Mustapha Stambouli of Mascara)
Publication Information
Steel and Composite Structures / v.43, no.1, 2022 , pp. 31-54 More about this Journal
Abstract
This paper is concerned with the buckling behavior of functionally graded graphene reinforced porous nanocomposite beams based on the finite element method (FEM) using two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element, and then the critical buckling load is calculated with different porosity distributions and GPL dispersion patterns. After a convergence and validation study to verify the accuracy of the present model, a comprehensive parametric study is carried out, with a particular focus on the effects of weight fraction, distribution pattern of GPL reinforcements on the Buckling behavior of the nanocomposite beam. The effects of various structural parameters such as the dispersion patterns for the graphene and porosity, thickness ratio, boundary conditions, and nonlocal and strain gradient parameters are brought out. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams, and the results allows to identify the most effective way to achieve improved buckling behavior of the porous nanocomposite beam.
Keywords
buckling; finite element method; functionally graded porous materials; nonlocal strain gradient theoryariational formulation;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
연도 인용수 순위
1 Karami, B., Shahsavari, D., Ordookhani, A., Gheisari, P., Li, L. and Eyvazian, A. (2020a), "Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions", Steel Compos. Struct., 36(6), 689-702. https://doi.org/10.12989/scs.2020.36.6.689.   DOI
2 Kitipornchai S., Chen D. and Yang J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.   DOI
3 Lam, D., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/s0022-5096(03)00053-x.   DOI
4 Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.   DOI
5 Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.   DOI
6 Arefi, M., Bidgoli, E.M.R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B: Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092.   DOI
7 Gao W., Qin Z., and Chu F. (2020), "Wave propagation in functionally graded porous plates reinforced with graphene platelets", Aerosp. Sci. Technol., 102, 105860. https://doi.org/10.1016/j.ast.2020.105860.   DOI
8 Ekinci K. L. and Roukes M. L. (2005), "Nanoelectromechanical systems", Rev. Sci. Instruments, 76(6), 061101. https://doi.org/10.1063/1.1927327.   DOI
9 Eringen A. C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
10 Eringen A. (1972), "Nonlocal polar elastic continua", J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
11 Heydarpour Y., Malekzadeh P., Dimitri R., and Tornabene F. (2020), "Thermoelastic analysis of rotatingmultilayer fg-gplrc truncated conical shells based on a coupled tdqm-nurbs scheme", Compos. Struct., 235, 111707. https://doi.org/10.1016/j.compstruct.2019.111707.   DOI
12 Ebrahimi F., Seyfi A., Dabbagh A., and Tornabene F. (07 2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71, 99-107. https://doi.org/10.12989/sem.2019.71.1.099.   DOI
13 Karami, B., Janghorban, M. and Rabczuk, T. (2020c), "Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory", Compos. Part B Eng., 182, 107622. https://doi.org/10.1016/j.compositesb.2019.107622.   DOI
14 Liu, F., Ming, P. and Li, J. (2007), "Ab initio calculation of ideal strength and phonon instability of graphene under tension", Phys. Rev. B, 76, 064120. https://doi.org/10.1103/PhysRevB.76.064120.   DOI
15 Merzouki, T., Houari M.S.A., Haboussi, M., Bessaim, A. and Ganapathi, M. (2020), "Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-020-01156-y.   DOI
16 Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D. and Beskos, D.E. (2003), "Bending and stability analysis of gradient elastic beams", J. Solids Struct., 40(2), 385-400. https://doi.org/10.1016/s0020-7683(02)00522-x.   DOI
17 Heidari F., Taheri K., Sheybani M., Janghorban M., and Tounsi A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38, 533-545. https://doi.org/10.12989/scs.2021.38.5.533.   DOI
18 Jouneghani F. Z., Dimitri R., and Tornabene F. (2018), "Structural response of porous fg nanobeams under hygro-thermo-mechanical loadings", Compos. Part B Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06 .023.   DOI
19 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory", J. Eng. Sci., 144, 103143. https://doi.org/10.1016/j.ijengsci.2019.103143.   DOI
20 Kumar, D. and Srivastava, A. (08 2016), "Elastic properties of cnt-and graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., 21, 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085.   DOI
21 Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E Lowdimensional Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028.   DOI
22 Mindlin, R. (1965), "Second gradient of strain and surface-tension in linear elasticity", J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.   DOI
23 Karami, B. and Shahsavari, D. (2020b), "On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets", Comput. Methods Appl. Mech. Eng., 359, 112767. https://doi.org/10.1016/j.cma.2019.112767.   DOI
24 Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.   DOI
25 Pollien, A., Conde, Y., Pambaguian, L. and Mortensen, A. (2005), "Graded open-cell aluminium foam core sandwich beams", Mater. Sci. Eng. A, 404(1), 9-18. https://doi.org/10.1016/j.msea.2005.05.096.   DOI
26 Saidi A.R., Bahaadini R. and Majidi-Mozafari K. (2019), "On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading", Compos. Part B Eng., 164, 778-799. https://doi.org/10.1016/j.compositesb.2019.01.074.   DOI
27 Houari M. S. A., Bessaim A., Bernard F., Tounsi A., and Mahmoud S. R. (2018), "Buckling analysis of new quasi-3d fg nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.   DOI
28 Karami B., Shahsavari D., Janghorban M., and Tounsi A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036   DOI
29 Nguyen, T., Kim, N.I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially fg nonlocal beams", Steel Compos. Struct., 17, 641-665. https://doi.org/10.12989/scs.2014.17.5.641.   DOI
30 Mindlin, R.D. (1963), "Microstructure in linear elasticity", Technical report AD0424156; Office of Naval Research, Defense Technical Information Center, USA. https://doi.org/10.21236/ad0424156.   DOI
31 Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20, 369-383. https://doi.org/10.12989/sss.2017.20.3.369.   DOI
32 Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded euler-bernoulli nano-beams using integral form of Eringen's non-local elasticity theory", Struct. Eng. Mech., 67, 417-425. https://doi.org/10.12989/sem.2018.67.4.417.   DOI
33 Eringen A. C. and Edelen D. G. B., (1972), "On nonlocal elasticity", J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
34 Merzouki, T., Ahmed, H.M.S., Bessaim, A., Haboussi, M., Dimitri, R. and Tornabene, F. (2022), "Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory", Math. Mech. Solids, 27(1), 66-92. https://doi.org/10.1177/10812865211011759.   DOI
35 Affdl, J.H. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.   DOI
36 Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3.   DOI
37 Aifantis, K.E. and Willis, J.R. (2005), "The role of interfaces in enhancing the yield strength of composites and polycrystals", J. Mech. Phys. Solid., 53(5), 1047-1070. https://doi.org/10.1016/j.jmps.2004.12.003.   DOI
38 Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.   DOI
39 Daikh, A. A., Drai, A., Bensaid, I., Houari, M. S. A. and Tounsi, A. (2021b), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandwich Struct Mater., 23(6), 2217-2244. https://doi.org/10.1177/1099636220909790.   DOI
40 Daikh, A. A., Houari, M. S. A., Belarbi, M. O., Mohamed, S. A. and Eltaher, M. A. (2021a), "Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory", Defense Technol., https://doi.org/10.1016/j.dt.2021.09.011.   DOI
41 Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W. (1994), "Strain gradient plasticity: theory and experiment", Acta Metallurgica et materialia, 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9.   DOI
42 Al-Furjan M., Habibi M., Ghabussi A., Safarpour H., Safarpour M., and Tounsi A. (2021), "Nonpolynomial framework for stress and strain response of the fg-gplrc disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.   DOI
43 Agrawal, R., Peng, B., Gdoutos, E.E. and Espinosa, H.D. (2008), "Elasticity size effects in ZnO nanowires-A combined experimental-computational approach", Nano Lett., 8(11), 3668-3674. https://doi.org/10.1021/nl801724b.   DOI
44 Fattahi A. M., Safaei B., Qin Z., and Chu F. (01 2021), "Experimental studies on elastic properties of high density polyethylene multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38, 177-187. https://doi.org/10.12989/scs.2021.38.2.177.   DOI
45 Anirudh B., Ganapathi M., Anant C., and Polit O. (2019), "A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling", Compos. Struct., 222, 110899. https://doi.org/10.1016/j.compstruct.2019.110899.   DOI
46 Barbaros, I., Yang, Y., Safaei, B., Yang, Z., Qin, Z. and Asmael, M. (2022), "State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials", Nanotechnol. Rev., 11(1), 321-371. https://doi.org/10.1515/ntrev-2022-0017.   DOI
47 Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.   DOI
48 Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.   DOI
49 Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021d), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.   DOI
50 Daikh, A. A., Houari, M. S. A., Belarbi, M. O., Chakraverty, S. and Eltaher, M. A. (2021c), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8.   DOI
51 Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018), "Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.   DOI
52 Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412.   DOI
53 Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006.   DOI
54 Yang F., Chong A., Lam D. and Tong P. (2002), "Couple stress based strain gradient theory for elasticity", J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/s0020-7683(02)00152-x.   DOI
55 Yas M.H. and Rahimi S. (2020), "Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using generalized differential quadrature method", Aerosp. Sci. Technol., 107, 106261. https://doi.org/10.1016/j.ast.2020.106261.   DOI
56 Zhou Z., Ni Y., Tong Z., Zhu S., Sun J. and Xu X. (2019), "Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells", J. Mech. Sci., 151, 537-550. https://doi.org/10.1016/j.ijmecsci.2018.12.012.   DOI
57 Wu D., Liu A., Huang Y., Huang Y., Pi Y. and Gao W. (2018), Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.   DOI
58 Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.   DOI
59 Roberts A. and Garboczi E. (2001), "Elastic moduli of model random three-dimensional closed-cell cellular solids", Acta Materialia, 49(2), 189-197. https://doi.org/10.1016/s1359-6454(00)00314-1.   DOI
60 Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.   DOI
61 Rafiee, M.A., Rafiee, J., Wang, Z., Song H., Yu Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.   DOI
62 Sahmani S., Aghdam M.M. and Rabczuk T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082.   DOI
63 Shafiei N., Mousavi A. and Ghadiri M. (2016), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007.   DOI
64 She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Walled Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.   DOI
65 Tao C. and Dai T. (2021), "Isogeometric analysis for postbuckling of sandwich cylindrical shell panels with graphene platelet reinforced functionally graded porous core", Compos. Struct., 260, 113258. https://doi.org/10.1016/j.compstruct.2020.113258.   DOI
66 Nguyen, Q.H., Nguyen, L.B., Nguyen, H.B. and Nguyen-Xuan, H. (2020), "A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of fg porous plates reinforced by graphene platelets", Compos. Struct., 245, 112321. https://doi.org/10.1016/j.compstruct.2020.112321.   DOI
67 Soleimani A., Dastani K., Hadi A. and Naei M. (03 2019), "Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., 30, 517-534. https://doi.org/10.12989/scs.2019.30.6.517.   DOI
68 Stolken, J.S. and Evans, A.G. (1998), "A microbend test method for measuring the plasticity length scale", Acta Materialia., 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0.   DOI
69 Wang Y., Xie K., Fu T. and Zhang W. (2021), "A third order shear deformable model and its applications for nonlinear dynamic response of graphene oxides reinforced curved beams resting on visco-elastic foundation and subjected to moving loads", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01238-x.   DOI