• Title/Summary/Keyword: trichloroethylene

Search Result 340, Processing Time 0.027 seconds

Catalytic Oxidation of Trichloroethylene over Pd-Loaded Sulfated Zirconia

  • Park, Jung-Nam;Lee, Chul-Wee;Chang, Jong-San;Park, Sang-Eon;Shin, Chae-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1355-1360
    • /
    • 2004
  • The oxidative decomposition of trichloroethylene (TCE) was investigated using palladium catalysts supported on pure and sulfated zirconia. The reactions were performed under dry and wet conditions in the temperature between 200 and $550^{\circ}C$ keeping GHSV of 14,000 $h^{-1}.$ The products such as $C_2Cl_4,\;C_2HCl_5,\;CO\;and\;CO_2$ were observed in the reaction. The addition of water in the feed affected the distribution of reaction product with dramatically improved catalytic activity. The spectroscopic investigations gave an evidence that the strong acid sites play an important role on controlling the catalytic activity. Among the catalysts investigated, the Pd-loaded sulfated zirconia catalyst with 1 wt% Pd was found to exhibit the highest catalytic activity in the presence of water vapor having the stability for 30 h of the reaction at $500^{\circ}C$. The successful performance of the catalyst might be attributed to promotional effect of Pd active sites and strong acid sites induced from surface sulfate species on zirconia.

Reaction Kinetics and Dependence of Energy Efficiency in the Dilute Trichloroethylene Removal by Non-thermal Plasma Process combined with Manganese Dioxide

  • Han, Sang-Bo;Oda, Tetsuji;Park, Jae-Youn;Koh, Hee-Seok;Park, Sang-Hyun;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.552-553
    • /
    • 2005
  • In order to improve energy efficiency in the dilute trichloroethylene removal using the nonthermal plasma process, the barrier discharge treatment combined with manganese dioxide was experimentally studied. Reaction kinetics in this process was studied on the basis of final byproducts distribution. Decomposition efficiency was improved to about 99% at the specific energy 40J/L with passing through manganese dioxide. C=C $\pi$ bond cleavage in TCE gave DCAC (single bond, C-C) through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were broken easily in the subsequent catalytic reaction due to the weak bonding energy about 3 ~ 4 eV compared with the double bonding energy in TCE molecules. Oxidation byproducts of DCAC and TCAA from TCE decomposition are generated from the barrier discharge plasma treatment and catalytic surface chemical reaction, respectively. Complete oxidation of TCE into $CO_X$ is required to about 400J/L.

  • PDF

Trichloroethylene (TCE) Removal Capacity of Synthesized Calcium Sulfoaluminate Minerals in Hydrated Cement-based Materials (합성 Calcium Sulfoaluminate계 시멘트 수화물의 Trichloroethylene (TCE) 제거능)

  • Ha, Min-Gyu;Ghorpade, Praveen A.;Kim, Jeong-Joo;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1463-1469
    • /
    • 2013
  • Portland cement used as binding material in combination of ferrous iron for reductive dechlorination of chlorinated organics is already widely studied topic by several researchers. However there is no clear evidence about the component solely responsible in cement for trichloroethylene (TCE) dechlorination. Many researchers suspect that the ettringite, monosulfate phases associated with hydration of cement are responsible active agents for TCE dechlorination. This study deals with synthesizing different pure crystalline minerals like ettringite and monosulfate phases of cement hydration and check individual phase's TCE dechlorinating capacity in combination with ferrous iron. The results indicated that the synthesized minerals showed no reduction capacity for TCE. The findings in the present study is significant as it shows that ettringite and monosulfate phases which were suspected minerals by previous researchers for TCE dechlorination are not reactive. Hence it is suspected that some other mineral or mineral form in cement phase could be responsible for TCE degradation.

Field Comparison of Korean Diffusive Sampler and Charcoal Tube Methods for Determination of Organic Vapors (공기중 유기용제 농도 측정에 있어서 국산 확산포집기와 활성탄관의 비교연구)

  • Cho, Sook Ja;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.1
    • /
    • pp.33-48
    • /
    • 1997
  • Korean diffusive sampler (KDS) and charcoal tube (CT) were used for sampling n-hexane, trichloroethylene and toluene in air KDS was made by Department of Environmental Health, SNU-SPH in 1995. Surveys were conducted at ten industrial plants with organic solvents. The relationship between two sampling methods was examined by linear regression analysis, and concentrations by two sampling methods were compared using paired t-test. The results are as follows: 1. The geometric means by CT and KDS methods were 3.26ppm and 3.32ppm for n-hexane, 5.07ppm and 6.34ppm for toluene, and 7.18ppm and 7.90ppm for toluene, respectively. There was no significant difference between results by CT and KDS methods in three organic vapors (p>0.05). When linear regression analysis was performed, two sampling methods were highly related ; correlation coefficients were 0.98, 0.90 and 0.96 for n-hexane, toluene and trichloroethylene, respectively. 2. Airborne concentrations of n-hexane (n=21) were below 0.5 TLV level. The GM by two methods were almost same (3.09 ppm). And there was no significant difference between results by two methods (p>0.05). 3. Since toluene and trichloroethylene concentrations showed several levels, appropriate sampling rates were applied for each level. The GM of toluene concentrations by two methods at 0.5 TLV level were 3.75ppm and 5.48ppm. The KDS method overestimated the toluene concentrations at 0.5 TLV level (p<0.05). The GM values of toluene concentrations at 1 TLV level were 31.80ppm and 25.38ppm and at 2 TLV level were 64.13 ppm and 51.37 ppm. The KDS method underestimated concentration at both level (p<0.05). For trichloroethylene, the GM at 0.5 TLV level were 4.97 ppm and 7.11ppm. The KDS method overestimated the concentration of trichloroethylene (p<0.05). In conclusion, concentrations of three organic vapors measured by CT and KDS were not significantly different and results by two methods were highly related. But at contain concentrations, the levels by method were significantly different. Therefore, it is suggested that sampling rate of KDS should be studied simultaneously using CT method for organic vapors.

  • PDF

Hazard and Risk Assessment and Cost and Benefit Analysis for Revising Permissible Exposure Limits in the Occupational Safety and Health Act of Korea (산업안전보건법 허용기준 대상물질의 허용기준 개정을 위한 유해성·위험성 평가 및 사회적 비용·편익 분석)

  • Kim, Ki Youn;Oh, Sung Eop;Hong, Mun Ki;Lee, Kwon Seob
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.134-145
    • /
    • 2015
  • Objectives: An objective of this study was to perform a risk assessment and social cost-benefit analysis for revising permissible exposure limits for seven substances: Nickel(Insoluble inorganic compounds), benzene, carbon disulfide, formaldehyde, cadmium(as compounds), trichloroethylene, touluene-2,4-diisocyanate. Materials and Methods: The research methods were divided into risk and hazard assessment and cost-benefit analysis. The risk and hazard assessment for the seven substances consists of four steps: An overview of GHS MSDS(1st), review of document of ACGIH's TLVs (2nd), comparison between international occupational exposure limits and domestic permissible exposure limits(3rd), and analysis of excess workplace and excess rate for occupational exposure limits based on previous work environment measurement data(4th). Total cost was estimated using cost of local exhaust ventilation, number of excess workplace and penalties for exceeding a permissible exposure limit. On the other hand, total benefit was calculated using the reduction rate of occupational disease, number of workplaces treating each substance and industrial accident compensation. Finally, the net benefit was calculated by subtracting total cost from total benefit. Results: All the substances investigated in this study were classified by CMR(Carcinogens, Mutagens or Reproductive toxicants) and their international occupational exposure limits were stricter than the domestic permissible exposure limits. As a result of excess rate analysis, trichloroethylene was the highest at 11%, whereas nickel was the lowest at 0.5%. The excess rates of all substances except for trichloroethylene were observed at less than 10%. Among the seven substances, the total cost was highest for trichloroethylene and lowest for carbon disulfide. The benefits for the seven substances were higher than costs estimated based on strengthening current permissible exposure limits. Thus, revising the permissible exposure limits of the seven substances was determined to be acceptable from a social perspective. Conclusions: The final revised permissible exposure limits suggested for the seven substances are as follows: $0.2mg/m^3$ for nickel, 0.5 ppm(TWA) and 2.5 ppm(STEL) for benzene, 1 ppm(TWA) for carbon disulfide, $0.01mg/m^3$(TWA) for cadmium, 10 ppm(TWA) and 25 ppm(STEL) for trichloroethylene, 0.3 ppm(TWA) for formaldehyde, and 0.005 ppm(TWA) and 0.02 ppm(STEL) for toluene diisocynate(isomers).

Development of Trickling Bioreactor(TBR) for Trichloroethylene biodegradation by Pseudomonas cepacia G4

  • Lee, Eun-Yeol;Ye, Byeong-Dae;Park, Seong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.410-413
    • /
    • 2000
  • Lab-scale trickling bioreactor(TBR) containing the biofilm of Pseudomonas cepacia G4 was developed for the treatment of trichloroethylene(TCE) in a waste gas stream. The effect of phenol feeding on the efficiency of TCE biodegadation in TBR was investigated with the change of inlet phenol concentration from 0 to 4.71 ppm. When 0.94 ppm of phenol was supplied, the best performance of TBR was maintained with the TCE removal efficiency of 58.1%. These results showed that the appropriate supply of phenol could stimulate TCE removal efficiency in TBR.

  • PDF

5% $Cr_2O_3/{\gamma}-Al_2O_3$ Catalysts Synthesized as Research for Oxidation Activation of Trichloroethylene

  • Myung, So-Young;Suh, Myung-Gyo;Lee, Yong-Hee
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.12a
    • /
    • pp.78-82
    • /
    • 2005
  • The research addressed the ability of 5% $Cr_2O_3/{\gamma}-Al_2O_3$ to catalytically oxidize trichloroethylene(TCE). In order to determine which procedure gives the most active catalyst among the attempted several procedures, catalytic oxidation reaction of TCE was conducted to every catalysts synthesized according to different process in tubular reactor system, which had functional relationships with temperature and space velocity. The ratio of TCE conversion was analyzed by gas chromatography with electron capture detector.

  • PDF

Biodegradation of Triehloroethylene by a Phenol-Utilizing Bacterium (Phenol을 이용한 균주에 의한 Trichloroethylene분해)

  • 이숙희;홍성용;하지홍
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.203-209
    • /
    • 1994
  • The bacterial strain which utilizes phenol and degrade TCE was isolated from an industrial waste site. The bacterial strain was named as T5-7 and identified as an Acinetobacter species. After phenol-induction, the strain T5-7 removed TCE efficiently without cell growth. So, it seems that TCE degradation was not related to cell growth. TCE degradation increased when initial cell concentrations of phenol-grown T5-7 were high. In the presence of phenol, initial degradation of TCE was delayed but total amount of degradation was not affected at final stage. The strain cultured in 0.1% yeast extract did not degrade TCE, which indicates that phenol induction was essential to the TCE degradation.

  • PDF