• Title/Summary/Keyword: tribology tests

Search Result 340, Processing Time 0.026 seconds

Reciprocating Wear Test of AISI 52100 Bearing Steel in h-BN-based Aqueous Lubricants

  • Gowtham Balasubramaniam;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.228-234
    • /
    • 2023
  • In this study, reciprocating wear tests are performed on AISI 52100 bearing steel to investigate its tribological behavior in a hexagonal boron nitride (h-BN) water solution. The h-BN-based aqueous lubricant is prepared using an atoxic procedure called ultrasonic sonication in pure water. Ball-on-flat reciprocating sliding experiments are conducted, where the ball is slewed on a fixed flat at 50-㎛ displacement. The lubricating behavior of h-BN is compared with that of deionized (DI) water. Results show that the friction coefficient is higher in h-BN testing than that in DI tests, but the results are equalized as the friction coefficient reaches a stable level. Scanning electron microscopic images reveal significant material loss in the center and mild abrasion on the edge of the wear scar in h-BN tests. However, these effects are minor in DI water situations. The results of energy-dispersive X-ray spectroscopy show that considerable oxidation occurs in the central zone of the wear scar in h-BN cases with strong adhesion and material removal. These findings reveal the importance of determining ideal circumstances that can tolerate material friction and wear.

Nanotribological Characteristics of Silicon Surfaces Modified by IBAD (IBAD로 표면개질된 실리콘 표면의 나노 트라이볼로지적 특성)

  • Park, Ji-Hyun;Yang, Seung-Ho;Kong, Ho-Seung;Jhang, Kyung-Young;Yoon, Eui-Sung
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Nano adhesion and friction between a $Si_{3}N_{4}$ AFM(atomic force microscope) tip and thin silver films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM and LFM(lateral force microscope) modes in various range of normal loads. Thin silver films deposited by IBAD (ion beam assisted deposition) on Si-wafer (100) and other Si-wafers of different surface roughness were used. Results showed that nano adhesion and friction decreased with the surface roughness. When the Si surfaces were coated by pure silver, the adhesion and friction decreased. But the adhesion and friction were not affected by the thickness of IBAD silver coating. As the normal force increased, the adhesion forces of bare Si-wafer and IBAD silver coating film remained constant, but the friction forces increased linearly. Test results suggested that the friction was mainly governed by the adhesion as long as the load was low.

Sliding Wear and Fretting Wear of Steam Generator Tube Materials (증기발생기 튜브재질의 미끄럼 마멸 및 프레팅 마멸 특성)

  • 김동구;조정우;이영제
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.380-385
    • /
    • 2001
  • In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in fretting wear damage due to contacts between the tubes and their supports. In this paper the fretting wear tests and the sliding wear tests were performed using the steam generator tube materials of Inconel 600 and 690 against STS 304. Sliding tests with the pin-on-disk type tribometer were done under various applied loads and sliding speeds at air environment. Fretting tests were done under various vibrating amplitudes and applied normal loads. From the results of sliding and fretting wear tests, the wear of Inconel 600 and 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and often drastically different wear rates can occur. It was found the results that the wear coefficients for Inconel 600 and 690 were 262.3$\times$10$\^$-15/Pa$\^$-1/ and 209.2$\times$10$\^$-15/Pa$\^$-1/, respectively. This study shows that Inconel 690 can provide much better wear resistance than Inconel 600 in air.

Improving the Precision of Specifications by Evaluating the Influence of Test Parameters on Tribological Results - A Synthesis from a Series of International - Round Robin Tests -

  • Woydt Mathias;Weber Hartwig
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.164-180
    • /
    • 2003
  • A series of cooperative interlaboratory tests (round robins) was conducted in 1997, 1998, 1999, 2000, 2001, 2002 and 2003 by the DIN 51834 Working Group on Tribological Tests in Translatory Oscillation Apparatus. The statistical analysis of these test results shows the influence of cleaning solvent, machine model and evaluation criteria on the tribological properties of the lubricants tested. Coefficients of friction and wear results are ranked according to the effects of ten different cleaning solvents, where isopropanol gave the lowest values and isoparaffin solvents the highest. The effect of machine model on coefficients of friction varied from about $0.2\%\;to\;0.9\%$ of the mean. Wear results were not affected. The tests also showed that the seizure criteria and methods of measuring wear required for in the test procedure do not provide a suitable measure of the tribological properties of some lubricants. The precision was Improved by introducing a grease apply caliper as well as an increased stroke to 1,5 mm and running-in. The temperature does not affect the precision of the oil test procedure.

  • PDF

EXPERIMENTAL STUDIES OF SCUFFING MECHANISM IN OIL LUBRICATED PISTON-RING/CYLINDER SLIDING CONTACTS

  • Shi, H.S.;Wang, H.;Hu, Y.Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.415-416
    • /
    • 2002
  • Experiments have been conducted to investigate scuffing mechanism in oil lubricated piston-ring /cylinder sliding contacts. Samples were extracted from actual components to simulate the real contact geometry and other influencing conditions. A standard test machine. with some modifications, has been used for the investigation of the effects of surface temperature load and sliding velocity. preliminary tests were carried out to find the critical temperature of scuffing using gradient temperature under a constant load, reciprocating frequency and stroke. The experimental and analytical results show that a transition from lubricated contact to adhesion, accompanied by the phenomena such as material transfer between the two sliding surfaces, local contact welding and temperature rise, and sharp increase in friction coefficient, appears to contribute to the final failure of scuffing.

  • PDF

Wear Characterisitics of TiN-coated Boron Cast Iron by Arc Evaporation Process (CAE 증착기술에 의해 TiN이 증착된 보론주철의 마모거동)

  • Song, Kun;Yoon, Eui-Sung;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.63-69
    • /
    • 1992
  • In order to gain better understanding of wear behaviors of TiN-coated boron cast iron, tests and analyses were conducted with block-on disc type tribometer. TiN layer of thickness $2 \mu m$ and $4 \mu m$, coated by cathodic arc evaporation process, were experimentally investigated with the variation of applied load and sliding speed under dry sliding condition. Wear characteristics were expressed in terms of the three-dimentional wear map as well as the wear rate vs sliding speed and load. Comparisons of wear and friction characteristics between coated cast irons and uncoated cast irns were also made. Wear mechanism of TiN layer was explained in view of surface interaction between the mating surfaces. The thicker coating exhibited higher hardness and adhesion strength. the significance of stresses at the surface and in the subsurface was briefly discussed in relation to the wear behavior.

Diamond-like Carbon Tribological Endurance using an Energetic Approach

  • Alkelae, Fathia;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.179-188
    • /
    • 2021
  • Reputed for their low friction coefficient and wear protection effect, diamond-like carbon (DLC) materials are considered amongst the most important lubricant coatings for tribological applications. In this framework, this investigation aims to elucidate the effect of a few operating parameters, such as applied stress and sliding amplitude on the friction lifetime of DLC coatings. Fretting wear tests are conducted using a 12.7 mm radius counterpart of 52100 steel balls slid against a substrate of the same material coated with a 2 ㎛ thickness DLC. Approximately, 5 to 57 N force is applied, generating a maximum Hertzian contact pressure of 430 to 662 MPa, corresponding to the applied force. The coefficient of friction (CoF) generates three regimes, first a running-in period regime, followed by a steady-state evolution regime, and finally a progressive increase of the CoF reaching the steel CoF value, as an indicator of reaching the substrate. To track the wear scenario, interrupted tests are performed with analysis combining scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), 3D profilometer and micro-Raman spectroscopy. The results show two endurance values: one characterizing the coating failure (Nc1), and the other (Nc2) indicating the friction failure which is situated where the CoF reaches a threshold value of μth = 0.3 in the third regime. The Archard energy density factor is used to determine the two endurance values (Nc1, Nc2). Based on this approach, a master curve is established delimitating both the coating and the friction endurances.

Wear of UHMWPE Pins Against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions (두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸)

  • 이권용;김석영;김신윤
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.167-172
    • /
    • 2002
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, fur the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steef discs.

An Experimental Study on the Measurement of Soot Contamination in A Diesel Engine Oil (디젤 엔진오일 내 Soot 함량 증가에 따른 오염도 측정에 관한 실험적 고찰)

  • Jo, Seong-Yong;Gong, Ho-Seong;Yun, Ui-Seong;Han, Heung-Gu;Jeong, Dong-Yun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.120-129
    • /
    • 2002
  • New method and device for the on-line measurement of soot concentration in a diesel engine oil are proposed, where the measurement principle is based mainly on attenuated internal total reflection. Various laboratory tests of the detector were performed mainly with carbon black particles of different contamination levels. It was found that the proposed detector could be well used to monitor oil deterioration due to soot contamination. Operational range of the detector was found from 0 to 5 mass percentage of soot content. Test results with water and fuel dilution showed that these effects were not remarkable. However, adsorption of carbon black particles to a measurement surface was considered to be a critical problem in the new detector. Effects of particle deposition onto the interface was experimentally evaluated with the oil temperature and turbulence and discussed throughout this work.

  • PDF

Frictional Behavior and Film Thickness of Some Liquid Crystals in Elastohydrodynamic Lubrication (탄성 유체 윤활에서의 액정의 마찰 특성 및 유막두께)

  • 이희성
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.255-259
    • /
    • 2002
  • The tribological properties of eight different liquid crystals were investigated in a concentrated point contact device and a ball-on-flat contact. For comparison, the same tests were also performed with commercial greases and the corresponding base oils. Under the fully flooded conditions studied, liquid crystals in a concentrated point contact showed lower friction than commercial greases and greater film thickness dependence on rolling speed than grease base oils or greases. Test results also showed that the film thickness and friction were little influenced by the composition of the examined liquid crystals.