• Title/Summary/Keyword: triangular reinforcement details

Search Result 8, Processing Time 0.017 seconds

New Hollow RC Bridge Pier Sections with Triangular Reinforcement Details: I. Development and Verification (삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각단면: I. 개발 및 검증)

  • Kim, Tae-Hoon;Lee, Seung-Hoon;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.109-120
    • /
    • 2015
  • The purpose of this study was to investigate the performance of new hollow reinforced concrete (RC) bridge pier sections with triangular reinforcement details. The proposed triangular reinforcement details are economically feasible and rational and facilitate shorter construction periods. A model of pier sections with triangular reinforcement details was tested under quasi-static monotonic loading. As a result, proposed triangular reinforcement details was equal to existing reinforcement details in terms of required performance. In the companion paper, the parametric study for the performance assessment of new hollow RC bridge pier sections with triangular reinforcement details is performed.

New Hollow RC Bridge Piers with Triangular Reinforcement Details (삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각)

  • Kim, Tae-Hoon;Kim, Ho-Young;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2016
  • This study investigates the seismic performance of new hollow reinforced concrete (RC) bridge piers with triangular reinforcement details. The developed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. We tested a model of new hollow RC bridge piers with triangular reinforcement details under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of RC structures. The used numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several hollow pier specimens investigated. As a result, developed triangular reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.

Performance Assessment of Solid Reinforced Concrete Columns with Triangular Reinforcement Details Using Nonlinear Seismic Analysis (비선형 지진해석을 통한 삼각망 철근상세를 갖는 중실 철근콘크리트 기둥의 성능평가)

  • Kim, Tae-Hoon;Ra, Kyeong-Woong;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • This study investigates the seismic performance of solid reinforced concrete columns with triangular reinforcement details using nonlinear seismic analysis. The developed reinforcement details are economically feasible and rational, and facilitate shorter construction periods. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several column specimens. As a result, developed triangular reinforcement details were designed to be superior to the existing reinforcement details in terms of required performance.

New Hollow RC Bridge Pier Sections with Triangular Reinforcement Details: II. Parametric Study (삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각단면: II. 매개변수 연구)

  • Kim, Tae-Hoon;Kim, Ho-Young;Son, Je-Kuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.121-132
    • /
    • 2015
  • The purpose of this study is to investigate the behavior characteristics of new hollow reinforced concrete (RC) bridge pier sections with triangular reinforcement details and to provide the details and reference data. Among the numerous parameters, this study concentrates on the shape of the section, the reinforcement details and the spacing of the transverse reinforcement. Additional eight column section specimens were tested under quasi-static monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A innovative confining effect model was adopted for new hollow bridge pier sections. This study documents the testing of new hollow RC bridge pier sections with triangular reinforcement details and presents conclusions based on the experimental and analytical findings.

Performance Assessment of Solid Reinforced Concrete Columns with Triangular Reinforcement Details (삼각망 철근상세를 갖는 중실 철근콘크리트 기둥의 성능평가)

  • Kim, Tae-Hoon;Lee, Seung-Hoon;Lee, Jae-Hoon;Shin, Hyun Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • The purpose of this study was to investigate the performance of solid reinforced concrete columns with triangular reinforcement details. The proposed reinforcement details has economic feasibility and rationality and makes construction periods shorter. A model of solid reinforced concrete columns with triangular reinforcement details was tested under a constant axial load and a quasi-static, cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. The used numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated. As a result, proposed triangular reinforcement details for material quantity reduction was superior to existing reinforcement details in terms of required performance.

Performance assessment of advanced hollow RC bridge column sections

  • Kim, T.H.;Kim, H.Y.;Lee, S.H.;Lee, J.H.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.703-722
    • /
    • 2015
  • This study investigates the performance of advanced hollow reinforced concrete (RC) bridge column sections with triangular reinforcement details. Hollow column sections are based on economic considerations of cost savings associated with reduced material and design moments, as against increased construction complexity, and hence increased labor costs. The proposed innovative reinforcement details are economically feasible and rational, and facilitate shorter construction periods. We tested a model of advanced hollow column sections under quasi-static monotonic loading. The results showed that the proposed triangular reinforcement details were equal to the existing reinforcement details, in terms of the required performance. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of the RC structures; and adopted a modified lateral confining effect model for the advanced hollow bridge column sections. Our study documents the testing of hollow RC bridge column sections with innovative reinforcement details, and presents conclusions based on the experimental and analytical findings. Additional full-scale experimental research is needed to refine and confirm the design details, especially for the actual detailing employed in the field.

Nonlinear Seismic Analysis of Hollow Cast-in-place and Precast RC Bridge Columns with Triangular Reinforcement Details (삼각망 철근상세를 갖는 현장타설 및 조립식 중공 철근콘크리트 교각의 비선형 지진해석)

  • Kim, Tae-Hoon;Ra, Kyeong-Woong;Lee, Jae-Hoon;Shin, Hyun Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.713-722
    • /
    • 2016
  • The goal of this study was to assess the seismic performance of hollow cast-in-place and precast reinforced concrete bridge columns with triangular reinforcement details. The developed material quantity reduction details are economically feasible and rational, and facilitate shorter construction periods. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. The used numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several hollow column specimens investigated. As a result, triangular reinforcement details were designed to be superior to the existing reinforcement details in terms of required seismic performance.

Performance Assessment of Hollow Precast Segmental Bridge Columns with Reinforcement Details for Material Quantity Reduction (조립식 물량저감 중공 철근콘크리트 교각의 성능평가)

  • Kim, Tae-Hoon;Park, Dong-Kyu;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • This study investigates the performance of hollow precast segmental bridge columns with reinforcement details for material quantity reduction. The proposed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. The precast segmental bridge columns provides an alternative to current cast-in-place systems. We tested a model of hollow precast segmental bridge columns under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of reinforced concrete structures. The used numerical method gives a realistic prediction of performance throughout the loading cycles for hollow precast segmental bridge column specimens investigated. As a result, proposed reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.