• Title/Summary/Keyword: triangular mesh

Search Result 190, Processing Time 0.029 seconds

On the Accuracy and Efficiency of Cell-centered and Vertex-centered Approaches for Unstructured Meshes (비정렬 격자계에서 셀 중심 및 버텍스 중심 계산방법에 따른 계산의 정확도와 효율에 관한 연구)

  • Kim S. R.;Wang Z. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.25-30
    • /
    • 2003
  • The numerical simulations with unstructured mesh by cell-centered and vertex-centered approaches were performed for the quadrilateral and triangular meshes. For the 2-D incompressible supersonic vortex flow, the simulation results and the analytic solution were compared and the accuracy was assessed. The calculation efficiency was measured by the parameter defined by the consumed CPU time multiplied by absolute error, As a results, equilateral triangular mesh yielded the best accuracy and efficiency among the tested meshes.

  • PDF

Offsetting of Triangular Net using Distance Fields (거리장을 이용한 삼각망의 옵셋팅)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.148-157
    • /
    • 2007
  • A new method which uses distance fields scheme and marching cube algorithm is proposed in order to get an accurate offset model of arbitrary shapes composed of triangular net. In the method, the space bounding the triangular net is divided into smaller cells. For the efficient calculation of distance fields, valid cells which will generate a portion of offset model are selected previously by the suggested detection algorithm. These valid cells are divided again into much smaller voxels which assure required accuracy. At each voxel distance fields are created by calculating the minimum distances between corner points of voxels and triangular net. After generating the whole distance fields, the offset surface were constructed by using the conventional marching cube algorithm together with mesh smoothing scheme. The effectiveness and validity of this new offset method was demonstrated by performing numerical experiments for the various types of triangular net.

A Study of a Surface Modeling Interpolating a Polygonal Curve Net Constructed from Scattered Points (점군으로부터 형성된 다각곡선망을 보간하는 곡면모델링에 관한 연구)

  • Ju, Sang-Yoon;Jun, Cha-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.529-540
    • /
    • 1995
  • The paper deals with a procedure for constructing a composite surface interpolating a polygonal curve mesh defined from 3D scattered points. The procedure consists of a poly-angulation, construction of a curve net, and interpolation of the curve net. The poly-angulation contains a stage that changes a triangular edge net obtained from a triangulation into a poly-angular edge net. A curve net is constructed by replacing edges on the edge net with cubic Bezier curves. Finally, inside of an n-sided polygon is interpolated by n subdivided triangular subpatches. The method interpolates given point data with relatively few triangular subpatches. For an n-sided polygon, our method constructs an interpolant with n subdivided triangular subpatches while the existing triangular surface modeling needs 3(n-2) subpatches. The obtained surface is composed of quartic triangular patches which are $G^1$-continuous to adjacent patches.

  • PDF

Two Dimensional Automatic Quadrilateral Mesh Generation for Metal Forming Analysis (소성 가공 공정 해석을 위한 2차원 사각 요소망 자동 생성)

  • Kim, Sang-Eun;Yang, Hyun-Ik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.197-206
    • /
    • 2009
  • In a finite element analysis of the metal forming processes having large plastic deformation, largely distorted elements are unstable and hence they influence upon the result toward negative way so that adaptive remeshing is required to avoid a failure in the numerical computation. Therefore automatic mesh generation and regeneration is very important to avoid a numerical failure in a finite element analysis. In case of generating quadrilateral mesh, the automation is more difficult than that of triangular mesh because of its geometric complexity. However its demand is very high due to the precision of analysis. Thus, in this study, an automatic quadrilateral mesh generation and regeneration method using grid-based approach is developed. The developed method contains decision of grid size to generate initial mesh inside a two dimensional domain, classification of boundary angles and inner boundary nodes to improve element qualities in case of concave domains, and boundary projection to construct the final mesh.

Fast Triangular Mesh Approximation for Terrain Data Using Wavelet Coefficients (Wavelet 변환 계수를 이용한 대용량 지형정보 데이터의 삼각형 메쉬근사에 관한 연구)

  • 유한주;이상지;나종범
    • Journal of Broadcast Engineering
    • /
    • v.2 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • This paper propose a new triangular mesh approximation method using wavelet coefficients for large terrain data. Using spatio-freguency localization characteristics of wavelet coefficients, we determine the complexity of terrain data and approximate the data according to the complexity. This proposed algorithm is simple and requires low computational cost due to its top-down approach. Because of the similarity between the mesh approximation and data compression procedures based on wavelet transform, we combine the mesh approximation scheme with the Embedded Zerotree Wavelet (EZW) coding scheme for the effective management of large terrain data. Computer simulation results demonstrate that the proposed algorithm is very prospective for the 3-D visualization of terrain data.

  • PDF

Parametric Blending of Hole Patches Based on Shape Difference (형상 차이 기반 홀 패치의 파라미트릭 블렌딩 기법)

  • Park, Jung-Ho;Park, Sanghun;Yoon, Seung-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.39-48
    • /
    • 2020
  • In this paper, we propose a new technique for filling holes in triangular mesh. First, arbitrary shaped holes are detected. Second, source and target hole patches are generated through triangulation, refinement, fairing, and smoothing. Finally, the shape difference between the two patches is analyzed and a patch with enhanced features is obtained through blending between patches. The effectiveness of the proposed technique is demonstrated by applying the hole filling technique to the triangular mesh model with various shaped holes.

Triangular Mesh Segmentation Based On Surface Normal (표면 법선 기반의 삼각형 메쉬 영역화 기법)

  • Kim, Dong-Hwan;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.22-29
    • /
    • 2002
  • This paper presents an algorithm for segmentation of 3D triangular mesh data. The proposed algorithm uses iterative merging of adjacent triangle pairs based on the orientation of triangles. The surface is segmented into patches, where each patch has a similar normal property Thus, each region can be approximated to planar patch and its boundaries have perceptually important geometric information of the entire mesh model. The experimental results show that the Proposed algorithm is peformed efficiently.

Depth Compression for Multi-View Sequences Using 3-D Mesh Representation (3-D 메쉬 모델을 이용한 다시점 영상의 깊이 정보 압축)

  • Jung, Il-Lyong;Kim, Chang-Su
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.203-204
    • /
    • 2007
  • In this work, we propose a compression algorithm for depth images, which are obtained from multi-view sequences. The proposed algorithm represents a depth image using a 3-D regular triangular mesh and predictively encodes the mesh vertices using a linear prediction scheme. The prediction errors are encoded with a arithmetic coder. Simulation results demonstrate that the proposed algorithm provides better performances than the JPEG2000 lossless coder.

  • PDF

Composite $G^{1}$ surface construction from 2D cross-sections (2차원 단면 데이터로부터 복합 $G^{1}$ 자유곡면 생성)

  • Park, Hyung-Jun;Na, Sang-Wook;Bae, Chae-Yeol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.44-47
    • /
    • 2004
  • This paper proposes an approach for composite surface reconstruction from 2D serial cross-sections, where the number of contours varies from section to section. In a triangular surface-based approach taken in most reconstruction methods, a triangular $G^{1}$ surface is constructed by stitching triangular patches over a triangular net generated from the compiled contours. In the proposed approach, the resulting surface is a composite $G^{1}$ surface consisting of three kinds of surfaces: skinned, surface is first represented by a B-spline surface approximating the serial contours of the skinned region and then serial contours of the skinned region and then transformed into a mesh of rectangular Bezier patches. On branched and capped regions, triangular $G^{1}$ surfaces are constructed so that the connections between the triangular surfaces and their neighboring surfaces are $G^{1}$ continuous. Since each skinned region is represented by an approximated rectangular $G^{2}$ surface instead of an interpolated triangular $G^{1}$ surface, the proposed approach can provide more visually pleasing surfaces and realize more efficient data reduction than the triangular surface-based approach. Some experimental results demonstrate its usefulness and quality.

  • PDF

Automatic Quadrilateral Element Mesh Generation Using Boundary Normal Offsetting In Various Two Dimensional Objects (다양한 2차원 형상에서의 외부 경계 절점 오프셋 방법을 이용한 자동 사각 요소 및 요소망 생성)

  • 김도헌;양현익
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.270-277
    • /
    • 2003
  • In two dimensional mechanical design analysis, quadrilateral element mesh is preferred because it provides more accurate result than triangular element mesh. However, automation of quadrilateral element mesh generation is much more complex because of its geometrical complexities. In this study, an automatic quadrilateral element mesh generation algorithm based on the boundary normal offsetting method and the boundary decomposition method is developed. In so doing, nodes are automatically placed using the boundary normal offsetting method and the decomposition method is applied to decompose the designed domain into a set of convex subdomains. The generated elements are improved by relocation of the existing nodes based on the four criteria - uniformity, aspect ratio, skewness and taper degree. The developed algorithm requires minimal user inputs such as boundary data and the distance between nodes.