• Title/Summary/Keyword: triangular cylinder

Search Result 38, Processing Time 0.024 seconds

Simulation of Plastic Collapsing Load and Deformation Behaviours(I) (소성 붕괴하중 및 변형거동 해석(1))

  • 김영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2165-2172
    • /
    • 1995
  • Optimization of mesh discretization has been proposed to improve the accuracy of limit analysis solution of collapse load by using the Rigid Body Spring Model(R. B. S. M) under the plane strain condition. Moreover, the fracture behaviour of materials was investigated by employing the fracture mechanism of a spring connecting the triangular rigid body element. It has been clarified that the collapse load and the geometry of slip boundary for optimized mesh discretization were close to those of the slip line solution. Further, the wedge-shaped fracture of a cylinder under a lateral load and the central fracture of a strip in the drawing process were well simulated.

A STABILZED FINITE ELEMENT COMPUTATION OF FLOW AROUND OSCILLATING 2D BODIES (안정화된 유한요소법을 이용한 진동하는 2차원 물체 주의 유동해석)

  • Ahn, Hyung-Taek;Rasool, Raheel
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.289-294
    • /
    • 2010
  • Numerical stud of an oscillating body in incompressible fluid is performed. Stabilized finite element method comprising of Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) formulations of linear triangular elements was employed to solve 2D incompressible Navier-Stokes equations whereas the motion of the body was considered by incorporating the arbitrary Langrangian-Eulerian(ALE) formulation. An algebraic moving mesh strategy is utilized for obtaining body conforming mesh deformation at each time step. Two tests cases, namely motion of a circular cylinder and of an airfoil in incompressible flow were analyzed. The model is first validated against the stationary cases and then the capability to handle moving boundaries is demonstrated.

  • PDF

Prediction of Strouhal Number of the Triangular Cylinder Bluff Bodies (삼각주형 와 발생체의 스트로우할 수의 예측)

  • 김창호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.71-78
    • /
    • 1998
  • 와(vortex) 박리는 고형물체가 유동내에서의 유체의 흐름을 방해할 때 발생하는 전 형적인 주기적 진동 현상이다. 본 연구에서는 삼각주형 실린더가 유동내에 유발하는 와 발 리 특성을 가시화 기법, 와에 의해 변조된 초음파의 파워 스펙트럼 및 유동관에서의 진동측 정 등을 통해 연구하였다. 가시화 관찰과 유동측정 실험 결과, 발생 와는 발생체 전면으로부 터 3d와 5d 사이에서 가장 안정성이 유지됨을 발견하였다. 넓은 레이놀즈 수(104≤Re≤106) 의 유동영역에서 액체와 기체원형유동의 측정 실험결과로부터 스트로우할(Strouhal) 수가 와발생체 폭(d)과 형상비(d/D)의 증가함수이며, 삼각주 단면의 높이에 반비례함을 알 수 있 었다. 또한 실험 결과로부터 실린더의 기하학적 치수로 삼각주형 실린더의 스트로우할 수를 예측할 수 있는 경험식을 제시하였다.

  • PDF

An Adaptive Finite Element Computation for the Added Mass of a Rectangular Cylinder in a Canal

  • Kwang-June,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.27-32
    • /
    • 1986
  • This paper describes an application of the adaptive finite element computations to a free surface flow problem in a canal. A-posteriori error estimates for the adaptive finite element computations are based on the dual extremum principles. Previously the dual extremum principles were applied to compute the upper and lower bounds of the added mass of two-dimensional cylinders in a canal[1,2]. However, the present method improves the convergence of the computed results by utilizing the local error estimates and by applying the adaptive meshes in the finite element computations. In a test result using triangular elements it is shown that the numerical error in the adaptive finite elements reduces quadratically compared with that in a uniform mesh subdivision.

  • PDF

New Geometric modeling method: reconstruction of surface using Reverse Engineering techniques

  • Jihan Seo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.565-574
    • /
    • 1999
  • In reverse engineering area, it is rapidly developing reconstruction of surfaces from scanning or digitizing data, but geometric models of existing objects unavailable many industries. This paper describes new methodology of reverse engineering area, good strategies and important algorithms in reverse engineering area. Furthermore, proposing reconstruction of surface technique is presented. A method find base geometry and blending surface between them. Each based geometry is divided by triangular patch which are compared their normal vector for face grouping. Each group is categorized analytical surface such as a part of the cylinder, the sphere, the cone, and the plane that mean each based geometry surface. And then, each based geometry surface is implemented infinitive surface. Infinitive average surface's intersections are trimmed boundary representation model reconstruction. This method has several benefits such as the time efficiency and automatic functional modeling system in reverse engineering. Especially, it can be applied 3D scanner and 3D copier.

  • PDF

Cylindrical Coordinate Generation for Femur and its Application (대퇴골에 대한 원통형 좌표계의 생성 및 응용)

  • Udeok Seo;Ku-Jin Kim;Yoo-Joo Choi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.735-737
    • /
    • 2023
  • 본 논문에서는 대퇴골의 3D 메쉬 모델에 대해 원통형 좌표계(cylindrical coordinate system)를 생성하는 방법을 제안한다. 원통형 좌표계는 대퇴골 메쉬의 방향에 따라 장축 및 단축을 결정한 뒤, 대퇴골을 포함하는 원통(right circular cylinder)을 계산하여 생성된다. 실험을 통해, 생성된 원통형 좌표계에서 균일하게 생성한 삼각형 메쉬(triangular mesh)를 대퇴골 메쉬에 투사한 결과를 보인다.

Types of perception on the body shape of old-old aged women

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.121-129
    • /
    • 2018
  • The purpose of this study is to provide a basic data of clothing development which can improve the satisfaction of the body shape by examining the subjective evaluation and type characteristics of the old-old women themselves. Q methodology was used for the study of subjectivity. The types of the body shape of the old-old women were analyzed as five types: bent body with protruding abdomen, backward bent body with slender legs, inverted triangle, swollen cylinder, triangle. The bent body with protruding abdomen had a bent back and waist. They were recognized that the bust and shoulders were sagging and abdomen was protruding. The backward bent body with slender legs was the smallest of the five types with a BMI index and shoulders and bust were sagging. And knee and waist were bent and legs were thin. The inverted triangular shape showed the highest BMI index among the 5 types, indicating that it is obese. They thought that the upper body was developed and the lower body and legs were slender. The swollen cylinder shape was analyzed to be the smallest and the most fat body. The triangle shape had developed lower body and bent back and waist. It is considered that a design consideration is needed to cover the disadvantages of the body shape in consideration of not only wearing feeling but also aesthetic part when making clothes. By making ergonomic garments considering the characteristics of body shape, it can be expected to change the body shape due to the wearing of clothing that is not suitable for body shape and the effect on physical health in a positive direction.

Stabilized finite element technique and its application for turbulent flow with high Reynolds number

  • Huang, Cheng;Yan, Bao;Zhou, Dai;Xu, Jinquan
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.465-480
    • /
    • 2011
  • In this paper, a stabilized large eddy simulation technique is developed to predict turbulent flow with high Reynolds number. Streamline Upwind Petrov-Galerkin (SUPG) stabilized method and three-step technique are both implemented for the finite element formulation of Smagorinsky sub-grid scale (SGS) model. Temporal discretization is performed using three-step technique with viscous term treated implicitly. And the pressure is computed from Poisson equation derived from the incompressible condition. Then two numerical examples of turbulent flow with high Reynolds number are discussed. One is lid driven flow at Re = $10^5$ in a triangular cavity, the other is turbulent flow past a square cylinder at Re = 22000. Results show that the present technique can effectively suppress the instabilities of turbulent flow caused by traditional FEM and well predict the unsteady flow even with coarse mesh.

Numerical Analysis of Viscoelastic Cylinders with Mode I Cracks (점탄성 원통의 모드 I 균열 해석)

  • Sim Woo-Jin;Oh Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.259-269
    • /
    • 2006
  • In this paper, the stress intensity factor, energy release rate and crack opening displacement are computed using the finite element method for axisymmetric viscoelastic cylinders with the penny-shaped and circumferential cracks. The triangular elements with quarter point nodes are used to describe the stress singularity around the crack edge. The analytical solutions are also derived by using the elastic-viscoelastic correspondence principle and compared with the numerical results to show the validity and accuracy of the presented method. Viscoelastic materials are assumed to behave elastically in dilatation and like a three-parameter standard linear solid.

The Characteristics of Field & Mode Distributions in a Cylindrical Reverberation Chamber (원통형 구조 전자파 잔향실 내 모드 및 필드 분포 특성)

  • 김정훈;이중근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.431-436
    • /
    • 2003
  • In this paper, simulation results of an electromagnetic field and mode distributions in a cylindrical reverberation chamber were presented. Reverberation chamber is an alternative test facility for a semi anechoic chamber, which is widely used for the analysis and measurement of electromagnetic interference and immunity tests. The method of computing the number of modes in a cylindrical reverberation chamber was presented and the number of modes in a cylindrical reverberation chamber with the same volume was compared with the different ratio of radius to height. The FDTD method was used to produce field characteristics inside of rectangular, right-angled isosceles triangular, and cylinder type reverberation chambers with the same test volume.