• Title/Summary/Keyword: tree-based routing

Search Result 184, Processing Time 0.018 seconds

Enhancing the Quality of Service by GBSO Splay Tree Routing Framework in Wireless Sensor Network

  • Majidha Fathima K. M.;M. Suganthi;N. Santhiyakumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2188-2208
    • /
    • 2023
  • Quality of Service (QoS) is a critical feature of Wireless Sensor Networks (WSNs) with routing algorithms. Data packets are moved between cluster heads with QoS using a number of energy-efficient routing techniques. However, sustaining high scalability while increasing the life of a WSN's networks scenario remains a challenging task. Thus, this research aims to develop an energy-balancing component that ensures equal energy consumption for all network sensors while offering flexible routing without congestion, even at peak hours. This research work proposes a Gravitational Blackhole Search Optimised splay tree routing framework. Based on the splay tree topology, the routing procedure is carried out by the suggested method using three distinct steps. Initially, the proposed GBSO decides the optimal route at initiation phases by choosing the root node with optimum energy in the splay tree. In the selection stage, the steps for energy update and trust update are completed by evaluating a novel reliance function utilising the Parent Reliance (PR) and Grand Parent Reliance (GPR). Finally, in the routing phase, using the fitness measure and the minimal distance, the GBSO algorithm determines the best route for data broadcast. The model results demonstrated the efficacy of the suggested technique with 99.52% packet delivery ratio, a minimum delay of 0.19 s, and a network lifetime of 1750 rounds with 200 nodes. Also, the comparative analysis ensured that the suggested algorithm surpasses the effectiveness of the existing algorithm in all aspects and guaranteed end-to-end delivery of packets.

Internet Multicast Routing Protocol Supporting Method over MPLS Networks (MPLS망에서의 인터넷 멀티캐스트 라우팅 프로토콜 지원 방안)

  • 김영준;박용진
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.93-103
    • /
    • 2000
  • This paper describes Internet multicast routing protocols over MPLS (Multiprotocol Label Switching) networks. Internet multicast routing protocols are divided into 3 categories in terms of tree types and tree characteristics: a shortest path tree, a shared tree and hybrid tree types. MPLS should support various multicast mechanisms because of extremely different IP multicast architectures, such as uni-/bi-directional link, Flooding/prune tree maintenance mechanism, the existence of different tree types with the same group, etc. There are so many problems over MPLS multicast that the solutions can't be easily figured out. In this paper, we make a few assumptions on which the solutions of IP multicast routing protocols over MPLS networks are given. A broadcasting label is defined for the shortest path tree types. Cell interleaving problems of the shared tree types is solved by using block-based transmission mechanism. Finally, the existing hybrid-type multicast routing protocol is reasonably modified to support MPLS multicast.

  • PDF

Solving Cluster Based Multicast Routing Problems Using A Simulated Annealing Algorithm (시뮬레이티디 어닐링 알고리즘을 이용한 클러스터 기반의 멀티캐스트 라우팅 문제 해법)

  • Kang Myung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • This paper proposes a Simulated Annealing(SA) algorithm for cluster-based Multicast Routing problems. Multicasting, the transmission of data to a group, can be solved from constructing multicast tree, that is. the whole network is partitioned to some clusters and the clusters are constructed by multicast tree. Multicast tree can be constructed by minimum-cost Steiner tree. In this paper, an SA algorithm is used in the minimum-cost Steiner tree. Especially, in SA, the cooling schedule is an important factor for the algorithm. Hence, in this paper, a cooling schedule is proposed for SA for multicast routing problems and analyzed the simulation results.

  • PDF

Ad hoc Network for Dynamic Multicast Routing Protocol Using ADDMRP

  • Chi, Sam-Hyun;Kim, Sung-Uk;Lee, Kang-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.209-214
    • /
    • 2007
  • In this paper, we proposed a new MANET (Mobile Ad hoc Networks) technology of routing protocol. The MANET has a mobility formation of mobile nodes in the wireless networks. Wireless network have two types architecture: the Tree based multicast and shared tree based. The two kind's architecture of general wireless networks have difficult to solve the problems existing in the network, such as connectivity, safety, and reliability. For this purpose, as using that ADDMRP (Ad hoc network Doppler effect-based for Dynamic Multicast Routing Protocol), this study gives the following suggestion for new topology through network durability and Omni-directional information. The proposed architectures have considered the mobility location, mobility time, density, velocity and simultaneous using node by Doppler effects and improved the performance.

Routing Techniques for Data Aggregation in Sensor Networks

  • Kim, Jeong-Joon
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.396-417
    • /
    • 2018
  • GR-tree and query aggregation techniques have been proposed for spatial query processing in conventional spatial query processing for wireless sensor networks. Although these spatial query processing techniques consider spatial query optimization, time query optimization is not taken into consideration. The index reorganization cost and communication cost for the parent sensor nodes increase the energy consumption that is required to ensure the most efficient operation in the wireless sensor node. This paper proposes itinerary-based R-tree (IR-tree) for more efficient spatial-temporal query processing in wireless sensor networks. This paper analyzes the performance of previous studies and IR-tree, which are the conventional spatial query processing techniques, with regard to the accuracy, energy consumption, and query processing time of the query results using the wireless sensor data with Uniform, Gauss, and Skew distributions. This paper proves the superiority of the proposed IR-tree-based space-time indexing.

An Efficient Algorithm for Dynamic Shortest Path Tree Update in Network Routing

  • Xiao, Bin;Cao, Jiannong;Shao, Zili;Sha, Edwin H.M.
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.499-510
    • /
    • 2007
  • Shortest path tree(SPT) construction is essential in high performance routing in an interior network using link state protocols. When some links have new state values, SPTs may be rebuilt, but the total rebuilding of the SPT in a static way for a large computer network is not only computationally expensive, unnecessary modifications can cause routing table instability. This paper presents a new update algorithm, dynamic shortest path tree(DSPT) that is computationally economical and that maintains the unmodified nodes mostly from an old SPT to a new SPT. The proposed algorithm reduces redundancy using a dynamic update approach where an edge becomes the significant edge when it is extracted from a built edge list Q. The average number of significant edges are identified through probability analysis based on an arbitrary tree structure. An update derived from significant edges is more efficient because the DSPT algorithm neglect most other redundant edges that do not participate in the construction of a new SPT. Our complexity analysis and experimental results show that DSPT is faster than other known methods. It can also be extended to solve the SPT updating problem in a graph with negative weight edges.

Multicast Routing Strategy Based on Game Traffic Overload (게임 트래픽 부하에 따른 멀티캐스트 라우팅 전략)

  • Lee Chang-Jo;Lee Kwang-Jae
    • Journal of Game and Entertainment
    • /
    • v.2 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The development of multicast communication services in the Internet is expected to lead a stable packet transfer even though On-Line Games generate heavy traffic. The Core Based Tree scheme among many multicast protocols is the most popular and suggested recently. However, CBT exhibits two major deficiencies traffic concentration or poor core placement problem. Thus, measuring the bottleneck link bandwidth along a path is important to understand the performance of multicast. We propose a method in which the core router's state is classified into SS(Steady State), NS(Normal State) and BS(Bottleneck State) according to the estimated link speed rate, and also the changeover of multicast routing scheme for traffic overload. In addition, we introduce Anycast routing tree, an efficient architecture for constructing shard multicast trees.

  • PDF

An Efficient Routing Scheme based on Link Quality and Load Balancing for Wireless Sensor Networks (무선 센서 네트워크에서 링크 상태 및 트래픽 분산 정보를 이용한 효과적인 라우팅 방법)

  • Kim, Sun-Myeng;Yang, Yeon-Mo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.11-19
    • /
    • 2010
  • ZigBee is a standard for wireless personal area networks(WPANs) based on the IEEE 802.15.4 standard. It has been developed for low cost and low power consumption. There are two alternative routing schemes that have been proposed for the ZigBee standard: Ad-hoc On-Demand Distance Vector(AODV) and tree routing. The tree routing forwards packets from sensors to a sink node based on the parent-child relationships established by the IEEE 802.15.4 MAC topology formation procedure. In order to join the network, a sensor node chooses an existing node with the strongest RSSI(Received signal strength indicator) signal as a parent node. Therefore, some nodes carry a large amount of traffic load and exhaust their energy rapidly. To overcome this problem, we introduce a new metric based on link quality and traffic load for load balancing. Instead of the strength of RSSI, the proposed scheme uses the new metric to choose a parent node during the topology formation procedure. Extensive simulation results using TOSSIM(TinyOS mote SIMulator) show that the CFR scheme outperforms well in comparison to the conventional tree routing scheme.

Efficient Flooding Methods for Link-state Routing Protocols (Link-state 라우팅 프로토콜을 위한 효율적인 플러딩 방법)

  • Kim, Jeong-Ho;Lee, Seung-Hwan;Rhee, Seung-Hyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.760-766
    • /
    • 2012
  • In this paper, we propose an efficient flooding process on link-state routing protocol. It is possible to exchange information using typical link-state routing protocol; for example, OSPF(Open Short Path First) or IS-IS(Intermediate system routing protocol) that floods LSA between nodes when the network topology change occurs. However, while the scale of network is getting bigger, it affects the network extensibility because of the unnecessary LSA that causes the increasing utilization of CPU, memory and bandwidth. An existing algorithm based on the Minimum spanning tree has both network instability and inefficient flooding problem. So, we propose algorithm for efficient flooding while maintaining network stability. The simulation results show that the flooding of proposed algorithm is more efficient than existing algorithm.

A Pareto Ant Colony Optimization Algorithm for Application-Specific Routing in Wireless Sensor & Actor Networks (무선 센서 & 액터 네트워크에서 주문형 라우팅을 위한 파레토 개미 집단 최적화 알고리즘)

  • Kang, Seung-Ho;Choi, Myeong-Soo;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.346-353
    • /
    • 2011
  • Routing schemes that service applications with various delay times, maintaining the long network life time are required in wireless sensor & actor networks. However, it is known that network lifetime and hop count of trees used in routing methods have the tradeoff between them. In this paper, we propose a Pareto Ant Colony Optimization algorithm to find the Pareto tree set such that it optimizes these both tradeoff objectives. As it enables applications which have different delay times to select appropriate routing trees, not only satisfies the requirements of various multiple applications but also guarantees long network lifetime. We show that the Pareto tree set found by proposed algorithm consists of trees that are closer to the Pareto optimal points in terms of hop count and network lifetime than minimum spanning tree which is a representative routing tree.