• Title/Summary/Keyword: tree-based models

Search Result 437, Processing Time 0.033 seconds

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

Comparative Analysis of Machine Learning Models for Crop's yield Prediction

  • Babar, Zaheer Ud Din;UlAmin, Riaz;Sarwar, Muhammad Nabeel;Jabeen, Sidra;Abdullah, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.330-334
    • /
    • 2022
  • In light of the decreasing crop production and shortage of food across the world, one of the crucial criteria of agriculture nowadays is selecting the right crop for the right piece of land at the right time. First problem is that How Farmers can predict the right crop for cultivation because famers have no knowledge about prediction of crop. Second problem is that which algorithm is best that provide the maximum accuracy for crop prediction. Therefore, in this research Author proposed a method that would help to select the most suitable crop(s) for a specific land based on the analysis of the affecting parameters (Temperature, Humidity, Soil Moisture) using machine learning. In this work, the author implemented Random Forest Classifier, Support Vector Machine, k-Nearest Neighbor, and Decision Tree for crop selection. The author trained these algorithms with the training dataset and later these algorithms were tested with the test dataset. The author compared the performances of all the tested methods to arrive at the best outcome. In this way best algorithm from the mention above is selected for crop prediction.

Comparing automated and non-automated machine learning for autism spectrum disorders classification using facial images

  • Elshoky, Basma Ramdan Gamal;Younis, Eman M.G.;Ali, Abdelmgeid Amin;Ibrahim, Osman Ali Sadek
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.613-623
    • /
    • 2022
  • Autism spectrum disorder (ASD) is a developmental disorder associated with cognitive and neurobehavioral disorders. It affects the person's behavior and performance. Autism affects verbal and non-verbal communication in social interactions. Early screening and diagnosis of ASD are essential and helpful for early educational planning and treatment, the provision of family support, and for providing appropriate medical support for the child on time. Thus, developing automated methods for diagnosing ASD is becoming an essential need. Herein, we investigate using various machine learning methods to build predictive models for diagnosing ASD in children using facial images. To achieve this, we used an autistic children dataset containing 2936 facial images of children with autism and typical children. In application, we used classical machine learning methods, such as support vector machine and random forest. In addition to using deep-learning methods, we used a state-of-the-art method, that is, automated machine learning (AutoML). We compared the results obtained from the existing techniques. Consequently, we obtained that AutoML achieved the highest performance of approximately 96% accuracy via the Hyperpot and tree-based pipeline optimization tool optimization. Furthermore, AutoML methods enabled us to easily find the best parameter settings without any human efforts for feature engineering.

A Study on the Comparison of Predictive Models of Cardiovascular Disease Incidence Based on Machine Learning

  • Ji Woo SEOK;Won ro LEE;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, a study was conducted to compare the prediction model of cardiovascular disease occurrence. It is the No.1 disease that accounts for 1/3 of the world's causes of death, and it is also the No. 2 cause of death in Korea. Primary prevention is the most important factor in preventing cardiovascular diseases before they occur. Early diagnosis and treatment are also more important, as they play a role in reducing mortality and morbidity. The Results of an experiment using Azure ML, Logistic Regression showed 88.6% accuracy, Decision Tree showed 86.4% accuracy, and Support Vector Machine (SVM) showed 83.7% accuracy. In addition to the accuracy of the ROC curve, AUC is 94.5%, 93%, and 92.4%, indicating that the performance of the machine learning algorithm model is suitable, and among them, the results of applying the logistic regression algorithm model are the most accurate. Through this paper, visualization by comparing the algorithms can serve as an objective assistant for diagnosis and guide the direction of diagnosis made by doctors in the actual medical field.

Machine Learning Based BLE Indoor Positioning Performance Improvement (머신러닝 기반 BLE 실내측위 성능 개선)

  • Moon, Joon;Pak, Sang-Hyon;Hwang, Jae-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.467-468
    • /
    • 2021
  • In order to improve the performance of the indoor positioning system using BLE beacons, a receiver that measures the angle of arrival among the direction finding technologies supported by BLE5.1 was manufactured and analyzed by machine learning to measure the optimal position. For the creation and testing of machine learning models, k-nearest neighbor classification and regression, logistic regression, support vector machines, decision tree artificial neural networks, and deep neural networks were used to learn and test. As a result, when the test set 4 produced in the study was used, the accuracy was up to 99%.

  • PDF

Effectiveness of Repeated Examination to Diagnose Enterobiasis in Nursery School Groups

  • Remm, Mare;Remm, Kalle
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.235-241
    • /
    • 2009
  • The aim of this study was to estimate the benefit from repeated examinations in the diagnosis of enterobiasis in nursery school groups, and to test the effectiveness of individual-based risk predictions using different methods. A total of 604 children were examined using double, and 96 using triple, anal swab examinations. The questionnaires for parents, structured observations, and interviews with supervisors were used to identify factors of possible infection risk. In order to model the risk of enterobiasis at individual level, a similarity-based machine learning and prediction software Constud was compared with data mining methods in the Statistica 8 Data Miner software package. Prevalence according to a single examination was 22.5%; the increase as a result of double examinations was 8.2%. Single swabs resulted in an estimated prevalence of 20.1% among children examined 3 times; double swabs increased this by 10.1%, and triple swabs by 7.3%. Random forest classification, boosting classification trees, and Constud correctly predicted about 2/3 of the results of the second examination. Constud estimated a mean prevalence of 31.5% in groups. Constud was able to yield the highest overall fit of individual-based predictions while boosting classification tree and random forest models were more effective in recognizing Enterobius positive persons. As a rule, the actual prevalence of enterobiasis is higher than indicated by a single examination. We suggest using either the values of the mean increase in prevalence after double examinations compared to single examinations or group estimations deduced from individual-level modelled risk predictions.

Characteristics and Reference Information of Riparian Vegetation for Realizing Ecological Restoration Classified by Reach of the River in Korea (한국 하천의 구간 별 특성과 생태적 복원을 실현하기 위한 대조식생 정보)

  • Jung, Song Hie;Kim, Areum;Seol, Jaewon;Lim, Bong Soon;Lee, Chang Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.447-461
    • /
    • 2018
  • To realize river restoration that ecological characteristics of the river are reflected, we classified the river into four reaches of valley stream, upstream, midstream, and downstream based on substrate as well as riverbed gradient obtained from the relationship between distance from the river mouth, and above sea level. Considering that the rivers of Korea have been dominated by various and intense artificial interferences over a lengthy period, we determined cross sectional range of the river based on the geological map and clarified transformation degree by reach. Vegetation profile diagram was prepared by depicting horizontal range and vertical stratification of major vegetation appearing in a belt transect of 10 m breadth installed between weirs constructed in both sides of the river. Restoration models by river reach were prepared based on breadth of waterway, bare ground, herb, shrub, and tree dominated vegetation zones on vegetation profiles wherein a flooding regime was reflected. Species composition information collected from vegetation established in each zone was systematized to use for restoring each reach ecologically. Further, background that longitudinal reaches and horizontal zones were divided, was discussed by comparing with case studies in foreign countries. In addition, necessity of ecological restoration of the river was discussed based on degree of integrity of Korean rivers, ecological significance of riparian vegetation, and importance of reference information for ecological restoration of the river.

Application-Oriented Context Pre-fetch Method for Enhancing Inference Performance in Ontology-based Context Management (온톨로지 기반의 상황정보관리에서 추론 성능 향상을 위한 어플리케이션 지향적 상황정보 선인출 기법)

  • Lee Jae-Ho;Park In-Suk;Lee Dong-Man;Hyun Soon-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.4
    • /
    • pp.254-263
    • /
    • 2006
  • Ontology-based context models are widely used in ubiquitous computing environment because they have advantages in the acquisition of conceptual context through inferencing, context sharing, and context reusing. Among the benefits, inferencing enables context-aware applications to use conceptual contexts which cannot be acquired by sensors. However, inferencing causes processing delay and thus becomes the major obstacle to the implementation of context-aware applications. The delay becomes longer as the amount of contexts increases. In this paper, we propose a context pre-fetching method to reduce the size of contexts to be processed in a working memory in attempt to speed up inferencing. For this, we extend the query-tree method to identify contexts relevant to the queries of a context-aware application. Maintaining the pre-fetched contexts optimal in a working memory, the processing delay of inference reduces without the loss of the benefits of ontology-based context model. We apply the proposed scheme to our ubiquitous computing middleware, Active Surroundings, and demonstrate the performance enhancement by experiments.

A Recommending System for Care Plan(Res-CP) in Long-Term Care Insurance System (데이터마이닝 기법을 활용한 노인장기요양급여 권고모형 개발)

  • Han, Eun-Jeong;Lee, Jung-Suk;Kim, Dong-Geon;Ka, Im-Ok
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1229-1237
    • /
    • 2009
  • In the long-term care insurance(LTCI) system, the question of how to provide the most appropriate care has become a major issue for the elderly, their family, and for policy makers. To help beneficiaries use LTC services appropriately to their needs of care, National Health Insurance Corporation(NHIC) provide them with the individualized care plan, named the Long-term Care User Guide. It includes recommendations for beneficiaries' most appropriate type of care. The purpose of this study is to develop a recommending system for care plan(Res-CP) in LTCI system. We used data set for Long-term Care User Guide in the 3rd long-term care insurance pilot programs. To develop the model, we tested four models, including a decision-tree model in data-mining, a logistic regression model, and a boosting and boosting techniques in an ensemble model. A decision-tree model was selected to describe the Res-CP, because it may be easy to explain the algorithm of Res-CP to the working groups. Res-CP might be useful in an evidence-based care planning in LTCI system and may contribute to support use of LTC services efficiently.

A Study on the Residential Satisfaction of Single Youth Households Tenants (청년 1인가구 임차인의 주거만족도에 관한 연구: 부산·경남지역을 중심으로)

  • Kwon, Jeongpyo;Kang, Jeonggyu
    • Land and Housing Review
    • /
    • v.13 no.2
    • /
    • pp.65-79
    • /
    • 2022
  • To suggest implications of future housing problems, this study investigates which characteristics affect the housing satisfaction of young single households. Using the survey data, we perform the multiple regression and decision tree models based on the SPSS Statistics 25.0. Our empirical results show several key features. First, housing characteristics and intention to continue single households had a positive (+) effect on housing satisfaction, in the order of natural, housing, physical characteristics, and intention to continue single households. Second, housing characteristics and intention to marry in the future had a positive (+) effect on housing satisfaction in the order of natural, housing, and physical characteristics. Third, housing characteristics and intention to increase household members in the future had a positive (+) effect on housing satisfaction, in the order of natural, housing, and physical characteristics satisfaction. Finally, the results of the decision tree model show that the natural characteristics were over 3.4, and housing satisfaction was the highest in the case of Jeonse. The results of this study provide three implications for policymakers. First, improving the residential environment of young single households is important. Second, providing customized housing for young single households could enhance the housing satisfaction of young people. Finally, housing provision needs to be carried out with suitable space for the lifestyle of young single households.