• Title/Summary/Keyword: tree-based models

Search Result 437, Processing Time 0.022 seconds

Performance Analysis of Virtual Conference System in the IPv6 Multicast Network (IPv6 멀티캐스트 네트워크에서 가상 학술회의 시스템의 성능 분석)

  • Eom, Tai-Rang;Do, Jin-Sook;Lee, Kyung-Geun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1B
    • /
    • pp.45-54
    • /
    • 2003
  • In the Protocol-Independent Multicast Sparse Mode(PIM-SM), we need a careful selection scheme for the Rendezvous Point(RP) which influences much on the QoS due to the delay among multicast group members and packet loss The QoS based RP selection schemes choose RPs which satisfy the restriction conditions such as bandwidth, delay, and other QoS parameters In this paper, we propose a new RP selection scheme which is a variation of the group-based RP selection scheme The new algorithm, MCT(Maximum Cross Tree), is implemented by taking advantages of the topology-based selection scheme and the group-based selection scheme as well In order to verify the proposed algorithm, we first measure the multicast traffic data of the Virtual Conference System implemented on the IPv6 network via KOREN, then expand the results to two types of network models and analyze the performance by computer simulation.

The Development of Rule-based AI Engagement Model for Air-to-Air Combat Simulation (공대공 전투 모의를 위한 규칙기반 AI 교전 모델 개발)

  • Minseok, Lee;Jihyun, Oh;Cheonyoung, Kim;Jungho, Bae;Yongduk, Kim;Cheolkyu, Jee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.637-647
    • /
    • 2022
  • Since the concept of Manned-UnManned Teaming(MUM-T) and Unmanned Aircraft System(UAS) can efficiently respond to rapidly changing battle space, many studies are being conducted as key components of the mosaic warfare environment. In this paper, we propose a rule-based AI engagement model based on Basic Fighter Maneuver(BFM) capable of Within-Visual-Range(WVR) air-to-air combat and a simulation environment in which human pilots can participate. In order to develop a rule-based AI engagement model that can pilot a fighter with a 6-DOF dynamics model, tactical manuals and human pilot experience were configured as knowledge specifications and modeled as a behavior tree structure. Based on this, we improved the shortcomings of existing air combat models. The proposed model not only showed a 100 % winning rate in engagement with human pilots, but also visualized decision-making processes such as tactical situations and maneuvering behaviors in real time. We expect that the results of this research will serve as a basis for development of various AI-based engagement models and simulators for human pilot training and embedded software test platform for fighter.

Representation of Three-dimensional Polygonal Mesh Models Using Hierarchical Partitioning and View dependent Progressive Transmission (계층적 분할을 이용한 삼차원 다각형 메쉬 모델의 표현 및 인간 시점에 따른 점진적 전송 방법)

  • 김성열;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.132-140
    • /
    • 2003
  • In this paper, we propose a new scheme for view-dependent transmission of three-dimensional (3-D) polygonal mesh models with hierarchial partitioning. In order to make a view-dependent representation of 3-D mesh models, we combine sequential and progressive mesh transmission techniques. By setting higher priorities to visible parts than invisible parts, we can obtain good qualify of 3-D models in a limited transmission bandwidth. In this paper, we use a multi -layer representation of 3-D mesh models based on hierarchical partitioning. After representing the 3-D mesh model in a hierarchical tree, we determine resolutions of partitioned submeshes in the last level. Then, we send 3-D model data by view-dependent selection using mesh merging and mesh splitting operations. By the partitioned mesh merging operation, we can reduce the joint boundary information coded redundantly in the partitioned submeshes. We may transmit additional mesh information adaptively through the mesh spritting operation.

Evaluation of Water Quality Prediction Models at Intake Station by Data Mining Techniques (데이터마이닝 기법을 적용한 취수원 수질예측모형 평가)

  • Kim, Ju-Hwan;Chae, Soo-Kwon;Kim, Byung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.705-716
    • /
    • 2011
  • For the efficient discovery of knowledge and information from the observed systems, data mining techniques can be an useful tool for the prediction of water quality at intake station in rivers. Deterioration of water quality can be caused at intake station in dry season due to insufficient flow. This demands additional outflow from dam since some extent of deterioration can be attenuated by dam reservoir operation to control outflow considering predicted water quality. A seasonal occurrence of high ammonia nitrogen ($NH_3$-N) concentrations has hampered chemical treatment processes of a water plant in Geum river. Monthly flow allocation from upstream dam is important for downstream $NH_3$-N control. In this study, prediction models of water quality based on multiple regression (MR), artificial neural network and data mining methods were developed to understand water quality variation and to support dam operations through providing predicted $NH_3$-N concentrations at intake station. The models were calibrated with eight years of monthly data and verified with another two years of independent data. In those models, the $NH_3$-N concentration for next time step is dependent on dam outflow, river water quality such as alkalinity, temperature, and $NH_3$-N of previous time step. The model performances are compared and evaluated by error analysis and statistical characteristics like correlation and determination coefficients between the observed and the predicted water quality. It is expected that these data mining techniques can present more efficient data-driven tools in modelling stage and it is found that those models can be applied well to predict water quality in stream river systems.

Prediction of commitment and persistence in heterosexual involvements according to the styles of loving using a datamining technique (데이터마이닝을 활용한 사랑의 형태에 따른 연인관계 몰입수준 및 관계 지속여부 예측)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.69-85
    • /
    • 2016
  • Successful relationship with loving partners is one of the most important factors in life. In psychology, there have been some previous researches studying the factors influencing romantic relationships. However, most of these researches were performed based on statistical analysis; thus they have limitations in analyzing complex non-linear relationships or rules based reasoning. This research analyzes commitment and persistence in heterosexual involvement according to styles of loving using a datamining technique as well as statistical methods. In this research, we consider six different styles of loving - 'eros', 'ludus', 'stroge', 'pragma', 'mania' and 'agape' which influence romantic relationships between lovers, besides the factors suggested by the previous researches. These six types of love are defined by Lee (1977) as follows: 'eros' is romantic, passionate love; 'ludus' is a game-playing or uncommitted love; 'storge' is a slow developing, friendship-based love; 'pragma' is a pragmatic, practical, mutually beneficial relationship; 'mania' is an obsessive or possessive love and, lastly, 'agape' is a gentle, caring, giving type of love, brotherly love, not concerned with the self. In order to do this research, data from 105 heterosexual couples were collected. Using the data, a linear regression method was first performed to find out the important factors associated with a commitment to partners. The result shows that 'satisfaction', 'eros' and 'agape' are significant factors associated with the commitment level for both male and female. Interestingly, in male cases, 'agape' has a greater effect on commitment than 'eros'. On the other hand, in female cases, 'eros' is a more significant factor than 'agape' to commitment. In addition to that, 'investment' of the male is also crucial factor for male commitment. Next, decision tree analysis was performed to find out the characteristics of high commitment couples and low commitment couples. In order to build decision tree models in this experiment, 'decision tree' operator in the datamining tool, Rapid Miner was used. The experimental result shows that males having a high satisfaction level in relationship show a high commitment level. However, even though a male may not have a high satisfaction level, if he has made a lot of financial or mental investment in relationship, and his partner shows him a certain amount of 'agape', then he also shows a high commitment level to the female. In the case of female, a women having a high 'eros' and 'satisfaction' level shows a high commitment level. Otherwise, even though a female may not have a high satisfaction level, if her partner shows a certain amount of 'mania' then the female also shows a high commitment level. Finally, this research built a prediction model to establish whether the relationship will persist or break up using a decision tree. The result shows that the most important factor influencing to the break up is a 'narcissistic tendency' of the male. In addition to that, 'satisfaction', 'investment' and 'mania' of both male and female also affect a break up. Interestingly, while the 'mania' level of a male works positively to maintain the relationship, that of a female has a negative influence. The contribution of this research is adopting a new technique of analysis using a datamining method for psychology. In addition, the results of this research can provide useful advice to couples for building a harmonious relationship with each other. This research has several limitations. First, the experimental data was sampled based on oversampling technique to balance the size of each classes. Thus, it has a limitation of evaluating performances of the predictive models objectively. Second, the result data, whether the relationship persists of not, was collected relatively in short periods - 6 months after the initial data collection. Lastly, most of the respondents of the survey is in their 20's. In order to get more general results, we would like to extend this research to general populations.

A Study on Factors of the Academic Achievement in Computer Training Courses as the Liberal Arts in University (대학 컴퓨터 실습 교양과목에서의 학업성취 요인에 대한 연구)

  • Kim, Wanseop
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.4
    • /
    • pp.433-447
    • /
    • 2013
  • The purpose of this study is to find out the factors of the students' achievement on the computer training courses which are based on computer practice. In order to improve the academic achievement of the students, it is necessary to analyze the factors affecting academic achievement and apply the results of the analysis to education. In particular, it is necessary to study for finding out factors of the academic achievement in practical computer training courses, because these courses are different from other courses focusing on the theory. In this study, in order to find out the factors, the logistic regression analysis and the decision tree analysis which is the field of data mining were peformed. For the experimental data, the test results of the MOS certification of the S university in seoul were used. Through logistic regression analysis it is found that the factors of the professors, class size, lecture time, group(lecture period) are important in order. Through decision tree analysis of data mining, it is found that there are some additional factors ; entrance year, whether the course is retaken, and the classroom environment. and these various factors effect the academic achievement compositively as identified through the model tree. The tree model was presented as a result of the analysis, and the importance of the factors is expressed numerically from multiple tree models by using the proposed mathematical formula.

Anomaly detection and attack type classification mechanism using Extra Tree and ANN (Extra Tree와 ANN을 활용한 이상 탐지 및 공격 유형 분류 메커니즘)

  • Kim, Min-Gyu;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.79-85
    • /
    • 2022
  • Anomaly detection is a method to detect and block abnormal data flows in general users' data sets. The previously known method is a method of detecting and defending an attack based on a signature using the signature of an already known attack. This has the advantage of a low false positive rate, but the problem is that it is very vulnerable to a zero-day vulnerability attack or a modified attack. However, in the case of anomaly detection, there is a disadvantage that the false positive rate is high, but it has the advantage of being able to identify, detect, and block zero-day vulnerability attacks or modified attacks, so related studies are being actively conducted. In this study, we want to deal with these anomaly detection mechanisms, and we propose a new mechanism that performs both anomaly detection and classification while supplementing the high false positive rate mentioned above. In this study, the experiment was conducted with five configurations considering the characteristics of various algorithms. As a result, the model showing the best accuracy was proposed as the result of this study. After detecting an attack by applying the Extra Tree and Three-layer ANN at the same time, the attack type is classified using the Extra Tree for the classified attack data. In this study, verification was performed on the NSL-KDD data set, and the accuracy was 99.8%, 99.1%, 98.9%, 98.7%, and 97.9% for Normal, Dos, Probe, U2R, and R2L, respectively. This configuration showed superior performance compared to other models.

Explainable Artificial Intelligence (XAI) Surrogate Models for Chemical Process Design and Analysis (화학 공정 설계 및 분석을 위한 설명 가능한 인공지능 대안 모델)

  • Yuna Ko;Jonggeol Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.542-549
    • /
    • 2023
  • Since the growing interest in surrogate modeling, there has been continuous research aimed at simulating nonlinear chemical processes using data-driven machine learning. However, the opaque nature of machine learning models, which limits their interpretability, poses a challenge for their practical application in industry. Therefore, this study aims to analyze chemical processes using Explainable Artificial Intelligence (XAI), a concept that improves interpretability while ensuring model accuracy. While conventional sensitivity analysis of chemical processes has been limited to calculating and ranking the sensitivity indices of variables, we propose a methodology that utilizes XAI to not only perform global and local sensitivity analysis, but also examine the interactions among variables to gain physical insights from the data. For the ammonia synthesis process, which is the target process of the case study, we set the temperature of the preheater leading to the first reactor and the split ratio of the cold shot to the three reactors as process variables. By integrating Matlab and Aspen Plus, we obtained data on ammonia production and the maximum temperatures of the three reactors while systematically varying the process variables. We then trained tree-based models and performed sensitivity analysis using the SHAP technique, one of the XAI methods, on the most accurate model. The global sensitivity analysis showed that the preheater temperature had the greatest effect, and the local sensitivity analysis provided insights for defining the ranges of process variables to improve productivity and prevent overheating. By constructing alternative models for chemical processes and using XAI for sensitivity analysis, this work contributes to providing both quantitative and qualitative feedback for process optimization.

Video Indexing using Motion vector and brightness features (움직임 벡터와 빛의 특징을 이용한 비디오 인덱스)

  • 이재현;조진선
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.4
    • /
    • pp.27-34
    • /
    • 1998
  • In this paper we present a method for automatic motion vector and brightness based video indexing and retrieval. We extract a representational frame from each shot and compute some motion vector and brightness based features. For each R-frame we compute the optical flow field; motion vector features are then derived from this flow field, BMA(block matching algorithm) is used to find motion vectors and Brightness features are related to the cut detection of method brightness histogram. A video database provided contents based access to video. This is achieved by organizing or indexing video data based on some set of features. In this paper the index of features is based on a B+ search tree. It consists of internal and leaf nodes stores in a direct access a storage device. This paper defines the problem of video indexing based on video data models.

  • PDF

Morpheme Recovery Based on Naïve Bayes Model (NB 모델을 이용한 형태소 복원)

  • Kim, Jae-Hoon;Jeon, Kil-Ho
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.195-200
    • /
    • 2012
  • In Korean, spelling change in various forms must be recovered into base forms in morphological analysis as well as part-of-speech (POS) tagging is difficult without morphological analysis because Korean is agglutinative. This is one of notorious problems in Korean morphological analysis and has been solved by morpheme recovery rules, which generate morphological ambiguity resolved by POS tagging. In this paper, we propose a morpheme recovery scheme based on machine learning methods like Na$\ddot{i}$ve Bayes models. Input features of the models are the surrounding context of the syllable which the spelling change is occurred and categories of the models are the recovered syllables. The POS tagging system with the proposed model has demonstrated the $F_1$-score of 97.5% for the ETRI tree-tagged corpus. Thus it can be decided that the proposed model is very useful to handle morpheme recovery in Korean.