• Title/Summary/Keyword: tree network

Search Result 1,162, Processing Time 0.026 seconds

A GTS-based Sensor Data Gathering under a Powerful Beam Structure (파워 빔 구조에서 GTS 기반 센서 데이터 수집 방안)

  • Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • This paper proposes an architecture of a sensor network for gathering data under a powerful beam cluster tree architecture. This architecture is used when there is a need to gather data from sensor node where there is no sink node connected to an existing network, or it is required to get a series of data specific to an event or time. The transmit distance of the beam signal is longer than that of the usual sensor node. The nodes of the network make a tree network when receiving a beam message transmitting from the powerful root node. All sensor nodes in a sink tree network synchronize to the superframe and know exactly the sequence value of the current superframe. When there is data to send to the sink node, the sensor node sends data at the corresponding allocated channel. Data sending schemes under the guaranteed time slot are tested and the delay and jitter performance is explained.

Design and Implementation of a Trajectory-based Index Structure for Moving Objects on a Spatial Network (공간 네트워크상의 이동객체를 위한 궤적기반 색인구조의 설계 및 구현)

  • Um, Jung-Ho;Chang, Jae-Woo
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.169-181
    • /
    • 2008
  • Because moving objects usually move on spatial networks, efficient trajectory index structures are required to achieve good retrieval performance on their trajectories. However, there has been little research on trajectory index structures for spatial networks such as FNR-tree and MON-tree. But, because FNR-tree and MON-tree are stored by the unit of the moving object's segment, they can't support the whole moving objects' trajectory. In this paper, we propose an efficient trajectory index structure, named Trajectory of Moving objects on Network Tree(TMN Tree), for moving objects. For this, we divide moving object data into spatial and temporal attribute, and preserve moving objects' trajectory. Then, we design index structure which supports not only range query but trajectory query. In addition, we divide user queries into spatio-temporal area based trajectory query, similar-trajectory query, and k-nearest neighbor query. We propose query processing algorithms to support them. Finally, we show that our trajectory index structure outperforms existing tree structures like FNR-Tree and MON-Tree.

Multicast Tree to Minimize Maximum Delay in Dynamic Overlay Network

  • Lee Chae-Y.;Baek Jin-Woo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1609-1615
    • /
    • 2006
  • Overlay multicast technique is an effective way as an alternative to IP multicast. Traditional IP multicast is not widely deployed because of the complexity of IP multicast technology and lack of application. But overlay multicast can be easily deployed by effectively reducing complexity of network routers. Because overlay multicast resides on top of densely connected IP network, In case of multimedia streaming service over overlay multicast tree, real-time data is sensitive to end-to-end delay. Therefore, moderate algorithm's development to this network environment is very important. In this paper, we are interested in minimizing maximum end-to-end delay in overlay multicast tree. The problem is formulated as a degree-bounded minimum delay spanning tree, which is a problem well-known as NP-hard. We develop tabu search heuristic with intensification and diversification strategies. Robust experimental results show that is comparable to the optimal solution and applicable in real time

  • PDF

Economic Design of Tree Network Using Tabu List Coupled Genetic Algorithms (타부 리스트가 결합된 유전자 알고리즘을 이용한 트리형 네트워크의 경제적 설계)

  • Lee, Seong-Hwan;Lee, Han-Jin;Yum, Chang-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • This paper considers an economic design problem of a tree-based network which is a kind of computer network. This problem can be modeling to be an objective function to minimize installation costs, on the constraints of spanning tree and maximum traffic capacity of sub tree. This problem is known to be NP-hard. To efficiently solve the problem, a tabu list coupled genetic algorithm approach is proposed. Two illustrative examples are used to explain and test the proposed approach. Experimental results show evidence that the proposed approach performs more efficiently for finding a good solution or near optimal solution in comparison with a genetic algorithm approach.

An Efficient Design of Sensor Network Using Minimum Spanning Tree (최소 신장 트리를 이용한 센서 네트워크의 효과적인 구성)

  • Kim, In-Bum
    • Journal of the Korea Computer Industry Society
    • /
    • v.10 no.3
    • /
    • pp.79-86
    • /
    • 2009
  • This paper proposes a mechanism for prompt and efficient construction of sensor network connecting sensor nodes and base stations using limited length edges minimum spanning tree. This mechanism can rapidly build a connecting tree which may be used in routing of sensor network. In an experiment for 2000 input terminal nodes, this mechanism can curtail 94.7% construction time comparing with the method by naive minimum spanning tree without tree length overheads. This shows the proposed mechanism can apply well to the application of swift construction of a sensor network.

  • PDF

Restoration of Distribution System with Distributed Energy Resources using Level-based Candidate Search

  • Kim, Dong-Eok;Cho, Namhun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.637-647
    • /
    • 2018
  • In this paper, we propose a method to search candidates of network reconfiguration to restore distribution system with distributed energy resources using a level-based tree search algorithm. First, we introduce a method of expressing distribution network with distributed energy resources for fault restoration, and to represent the distribution network into a simplified graph. Second, we explain the tree search algorithm, and introduce a method of performing the tree search on the basis of search levels, which we call a level-based tree search in this paper. Then, we propose a candidate search method for fault restoration, and explain it using an example. Finally, we verify the proposed method using computer simulations.

Multicast Tree Construction with User-Experienced Quality for Multimedia Mobile Networks

  • Jung, Hoejung;Kim, Namgi
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.546-558
    • /
    • 2017
  • The amount of multimedia traffic over the Internet has been increasing because of the development of networks and mobile devices. Accordingly, studies on multicast, which is used to provide efficient multimedia and video services, have been conducted. In particular, studies on centralized multicast tree construction have attracted attention with the advent of software-defined networking. Among the centralized multicast tree construction algorithms, the group Takahashi and Matsuyama (GTM) algorithm is the most commonly used in multiple multicast tree construction. However, the GTM algorithm considers only the network-cost overhead when constructing multicast trees; it does not consider the temporary service disruption that arises from a link change for users receiving an existing service. Therefore, in this study, we propose a multiple multicast tree construction algorithm that can reduce network cost while avoiding considerable degradation of service quality to users. This is accomplished by considering both network-cost and link-change overhead of users. Experimental results reveal that, compared to the GTM algorithm, the proposed algorithm significantly improves the user-experienced quality of service by substantially reducing the number of linkchanged users while only slightly adding to the network-cost overhead.

The GR-tree: An Energy-Efficient Distributed Spatial Indexing Scheme in Wireless Sensor Networks (GR-tree: 무선 센서 네트워크에서 에너지 효율적인 분산 공간색인기법)

  • Kim, Min-Soo;Jang, In-Sung
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.63-74
    • /
    • 2011
  • Recently, there has been much interest in the spatial query which energy-efficiently acquires sensor readings from sensor nodes inside specified geographical area of interests. The centralized approach which performs the spatial query at a server after acquiring all sensor readings, though simple, it incurs high wireless transmission cost in accessing all sensor nodes. In order to remove the high wireless transmission cost, various in-network spatial indexing schemes have been proposed. They have focused on reducing the transmission cost by performing distributed spatial filtering on sensor nodes. However, these in-network spatial indexing schemes have a problem which cannot optimize both the spatial filtering and the wireless routing among sensor nodes, because these schemes have been developed by simply applying the existing spatial indexing schemes into the in-network environment. Therefore, we propose a new distributed spatial indexing scheme of the GR-tree. The GR-tree which form s a MBR-based tree structure, can reduce the wireless transmission cost by optimizing both the efficient spatial filtering and the wireless routing. Finally, we compare the existing spatial indexing scheme through extensive experiments and clarify our approach's distinguished features.

An Efficient Shortcut Path Algorithm using Depth in Zigbee Network (Zigbee 네트워크에서 Depth를 이용한 효율적인 중간 경로 감소 알고리즘)

  • Kim, Duck-Young;Jung, Woo-Sub;Cho, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1475-1482
    • /
    • 2009
  • In ZigBee network, using energy efficiently is necessary because ZigBee node works by battery. To use energy efficiently, it is one of the way to reduce unnecessary network traffic. In this paper, it presents efficient shortcut routing algorithm using depth of destination node in ZigBee network. In traditional tree routing, each node transfers data only to its own parent or child node, which is inefficient way. Efficient shortcut routing algorithm is also based on tree routing. However, we suggests the algorithm with using neighbor table and depth of destination that is able to transfer data to other neighbor node, not only to parent or child node. It minimizes coordinator bottleneck state and unnecessary intermediate routing path which happens in traditional tree routing.

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.