This study deals with the problem of information dissemination in a communication network, which is defined to be the process whereby a set of messages, generated by an originator, is transmitted to all the members within the network. Since this type of message generally includes control data to manage the network or global information that all members should know, it is to be required to transmit it to all the members as soon as possible. In this study, it is assumed that a member can either transmit or receive a message and an informed member can transmit it to only one of its neighbors at time. This type of transmission is called 'local broadcasting' Several schemes of call sequencing are designed for a general-type network with nonuniform edge transmission times, and then computer simulations are performed. Some heuristics for information dissemination are proposed and tested. For this, optimal call sequence in a tree-type network, sequencing theory and graph theory are applied. The result shows that call sequencing based on the shortest path tree is the most desirable.
Journal of the Korea Institute of Information Security & Cryptology
/
v.11
no.4
/
pp.77-89
/
2001
Recently, with the explosive growth of communication technologies, group oriented services such as teleconference and multi-player game are increasing. Access control to information is handled by secret communications with group keys shared among members, and efficient updating of group keys is vital to such secret communications of large and dynamic groups. In this paper, we employ (2,4)-tree as a key tree, which is one of height balanced trees, to reduce the number of key updates caused by join or leave of members. Especially, we use CBT(Core Based Tree) to gather network configurations of group members and reflect this information to key tree structure to update group keys efficiently when splitting or merging of subgroups occurs by network failure or recovery.
This paper presents the new methodology of analyzing and classifying patterns of customers in mobile telecommunication market to enhance the performance of predicting the credit information based on the decision tree and neural network. With the application of variance selection process from decision tree, the systemic process of defining input vector's value and the rule generation were developed. In point of customer management, this research analyzes current customers and produces the patterns of them so that the company can maintain good customer relationship and makes special management on the customer who has huh potential of getting out of contract in advance. The real implementation of proposed method shows that the predicted accuracy is higher than existing methods such as decision tree(CART, C4.5), regression, neural network and combined model(CART and NN).
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.1
/
pp.227-247
/
2018
For intermittently connected wireless sensor networks deployed in hash environments, sensor nodes may fail due to internal or external reasons at any time. In the process of data collection and recovery, we need to speed up as much as possible so that all the sensory data can be restored by accessing as few survivors as possible. In this paper a novel redundant data storage algorithm based on minimum spanning tree and quasi-randomized matrix-QRNCDS is proposed. QRNCDS disseminates k source data packets to n sensor nodes in the network (n>k) according to the minimum spanning tree traversal mechanism. Every node stores only one encoded data packet in its storage which is the XOR result of the received source data packets in accordance with the quasi-randomized matrix theory. The algorithm adopts the minimum spanning tree traversal rule to reduce the complexity of the traversal message of the source packets. In order to solve the problem that some source packets cannot be restored if the random matrix is not full column rank, the semi-randomized network coding method is used in QRNCDS. Each source node only needs to store its own source data packet, and the storage nodes choose to receive or not. In the decoding phase, Gaussian Elimination and Belief Propagation are combined to improve the probability and efficiency of data decoding. As a result, part of the source data can be recovered in the case of semi-random matrix without full column rank. The simulation results show that QRNCDS has lower energy consumption, higher data collection efficiency, higher decoding efficiency, smaller data storage redundancy and larger network fault tolerance.
The Journal of Korean Institute of Communications and Information Sciences
/
v.36
no.4A
/
pp.388-398
/
2011
In this paper, we introduce an EMSP(Efficient Mobility Support Protocol) for mobile sensor network with mobility-aware. We propose virtual cluster and node split scheme considering movements of mobile nodes. The existing M-LEACH protocol suffers from communication cost spent on JOIN request information during invitation phase. To address this issue, the large boundary of the cluster in LUR-tree can reduce superfluous update cost. In addition to the expansion of the cluster, the proposed approach exploits node split algorithms used in R-tree in order to uniformly form a cluster. The simulated results show that energy-consumption has less up to about 40% than LEACH-C and 8% than M-LEACH protocol. Finally, we show that the proposed scheme outperforms those of other in terms of lifetime of sensor fields and scalability in wireless sensor network.
This paper investigates the problem of protecting multicast sessions in mesh wavelength-division multiplexing (WDM) networks against single link failures, for example, a fiber cut in optical networks. First, we study the two characteristics of multicast sessions in mesh WDM networks with sparse light splitter configuration. Traditionally, a multicast tree does not contain any circles, and the first characteristic is that a multicast tree has better performance if it contains some circles. Note that a multicast tree has several branches. If a path is added between the leave nodes on different branches, the segment between them on the multicast tree is protected. Based the two characteristics, the survivable multicast sessions routing problem is formulated into an Integer Linear Programming (ILP). Then, a heuristic algorithm, named the adaptive shared segment protection (ASSP) algorithm, is proposed for multicast sessions. The ASSP algorithm need not previously identify the segments for a multicast tree. The segments are determined during the algorithm process. Comparisons are made between the ASSP and two other reported schemes, link disjoint trees (LDT) and shared disjoint paths (SDP), in terms of blocking probability and resource cost on CERNET and USNET topologies. Simulations show that the ASSP algorithm has better performance than other existing schemes.
Purpose Youth unemployment is a social problem that continues to emerge in Korea. In this study, we create a model that predicts the employment of college graduates using decision tree, random forest and artificial neural network among machine learning techniques and compare the performance between each model through prediction results. Design/methodology/approach In this study, the data processing was performed, including the acquisition of the college graduates' vocational path survey data first, then the selection of independent variables and setting up dependent variables. We use R to create decision tree, random forest, and artificial neural network models and predicted whether college graduates were employed through each model. And at the end, the performance of each model was compared and evaluated. Findings The results showed that the random forest model had the highest performance, and the artificial neural network model had a narrow difference in performance than the decision tree model. In the decision-making tree model, key nodes were selected as to whether they receive economic support from their families, major affiliates, the route of obtaining information for jobs at universities, the importance of working income when choosing jobs and the location of graduation universities. Identifying the importance of variables in the random forest model, whether they receive economic support from their families as important variables, majors, the route to obtaining job information, the degree of irritating feelings for a month, and the location of the graduating university were selected.
Majidha Fathima K. M.;M. Suganthi;N. Santhiyakumari
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.8
/
pp.2188-2208
/
2023
Quality of Service (QoS) is a critical feature of Wireless Sensor Networks (WSNs) with routing algorithms. Data packets are moved between cluster heads with QoS using a number of energy-efficient routing techniques. However, sustaining high scalability while increasing the life of a WSN's networks scenario remains a challenging task. Thus, this research aims to develop an energy-balancing component that ensures equal energy consumption for all network sensors while offering flexible routing without congestion, even at peak hours. This research work proposes a Gravitational Blackhole Search Optimised splay tree routing framework. Based on the splay tree topology, the routing procedure is carried out by the suggested method using three distinct steps. Initially, the proposed GBSO decides the optimal route at initiation phases by choosing the root node with optimum energy in the splay tree. In the selection stage, the steps for energy update and trust update are completed by evaluating a novel reliance function utilising the Parent Reliance (PR) and Grand Parent Reliance (GPR). Finally, in the routing phase, using the fitness measure and the minimal distance, the GBSO algorithm determines the best route for data broadcast. The model results demonstrated the efficacy of the suggested technique with 99.52% packet delivery ratio, a minimum delay of 0.19 s, and a network lifetime of 1750 rounds with 200 nodes. Also, the comparative analysis ensured that the suggested algorithm surpasses the effectiveness of the existing algorithm in all aspects and guaranteed end-to-end delivery of packets.
The Transactions of the Korea Information Processing Society
/
v.1
no.2
/
pp.184-193
/
1994
This paper considers the Updating Minimum-weight Spanning Tree Problem(UMP), that is, the problem to update the Minimum-weight Spanning Tree(MST) in response to topology change of the network. This paper proposes the algorithm which reconstructs the MST after several links deleted and added. Its message complexity and its ideal-time complexity are Ο(m+n log(t+f)) and Ο(n+n log(t+f)) respectively, where n is the number of processors in the network, t(resp.f) is the number of added links (resp. the number of deleted links of the old MST), And m=t+n if f=Ο, m=e (i.e. the number of links in the network after the topology change) otherwise. Moreover the last part of this paper touches in the algorithm which deals with deletion and addition of processors as well as links.
Fog may have a significant impact on road conditions. In an attempt to improve fog predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, multinomial logistic regression, neural network and support vector machine. To validate machine learning models, the results from the simulation was compared with the fog data observed over Jeju(184 ASOS site) and Gosan(185 ASOS site). Predictive rates proposed by six data mining methods are all above 92% at two regions. Additionally, we validated the performance of machine learning models with WRF (weather research and forecasting) model meteorological outputs. We found that it is still not good enough for operational fog forecast. According to the model assesment by metrics from confusion matrix, it can be seen that the fog prediction using neural network is the most effective method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.