• 제목/요약/키워드: tree data structure

검색결과 600건 처리시간 0.035초

1H*-tree: 데이터 스트림의 다차원 분석을 위한 개선된 데이터 큐브 구조 (1H*-tree: An Improved Data Cube Structure for Multi-dimensional Analysis of Data Streams)

  • 심상예;정우상;이연;신승선;이동욱;배혜영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.332-335
    • /
    • 2008
  • In this paper, based on H-tree, which is proposed as the basic data cube structure for multi-dimensional data stream analysis, we have done some analysis. We find there are a lot of redundant nodes in H-tree, and the tree-build method can be improved for saving not only memory, but also time used for inserting tuples. Also, to facilitate more fast and large amount of data stream analysis, which is very important for stream research, H*-tree is designed and developed. Our performance study compare the proposed H*-tree and H-tree, identify that H*-tree can save more memory and time during inserting data stream tuples.

H*-tree/H*-cubing: 데이터 스트림의 OLAP를 위한 향상된 데이터 큐브 구조 및 큐빙 기법 (H*-tree/H*-cubing-cubing: Improved Data Cube Structure and Cubing Method for OLAP on Data Stream)

  • 심상예;이연;이동욱;김경배;배해영
    • 정보처리학회논문지D
    • /
    • 제16D권4호
    • /
    • pp.475-486
    • /
    • 2009
  • 데이터 큐브는 다차원 데이터 분석 및 멀티레벨 데이터 분석에 많이 사용되고 있는 중요한 데이터 구조이다. 최근 데이터 스트림의 온라인 분석에 대한 수요가 증가하면서 스트림 큐브, Flow 큐브, S-큐브 등의 다양한 데이터 큐브 구조와 기법이 제안되었다. 그러나 기존 기법들은 데이터 큐브 생성 시 고비용이 요구되는 단점을 가지고 있어 효과적인 데이터 구조, 질의 방법 및 알고리즘에 대한 연구가 필요하다. 스트림 큐브 기법에서는 H-큐빙 기법을 사용하여 큐보이드를 선택하고, 계산된 셀들을 인기 패스에 있는 큐보이드들로 구성된 H-트리에 저장한다. 그러나 스트림 큐브 기법에서는 H-트리에 데이터를 비순차적으로 삽입하기 때문에 H-큐빙 기법을 사용하여 질의를 처리할 때 제한성을 갖고 있다. 본 논문에서는 데이터의 트리 구조의 각 층에 대한 인덱스를 구축하여 스트림 데이터에 대한 빠른 삽입 연산을 지원하는 $H^*$-tree 구조와, popular-path에 존재하지 않는 큐보이드를 빨리 계산하여 스트림 데이터에 대한 빠른 애드 혹 질의 응답을 지원하는 $H^*$-cubing 기법을 제안한다. 성능평가를 통하여 제안한 $H^*$-tree 기법은 보다 적은 큐브 구축 시간을 지원하며, $H^*$-cubing 기법이 stream cube 기법보다 빠른 애드 혹질의 응답 시간을 소요하며, 보다 적은메모리를 사용함을 보여준다.

다차원 데이터 및 동적 이용자 선호도를 위한 색인 구조의 연구 (An Index Structure for Efficiently Handling Dynamic User Preferences and Multidimensional Data)

  • 최종혁;류관희;나스리디노프 아지즈
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권7호
    • /
    • pp.925-934
    • /
    • 2017
  • 다차원 색인 구조 중 대표적인 것은 R-tree에 기초한 색인으로써 공간 정보 등에 있어 강력한 성능을 보인다. 하지만 R-tree의 경우 차원의 수가 증가하거나 이용자 선호에 따라 부분 차원만을 이용하는 경우, 색인을 생성하는 시간이 크게 증가하고 생성된 색인의 효율성이 감소하는 문제를 갖고 있다. 따라서 지속적으로 차원이 증가하고 있는 최근의 다차원 데이터에는 해당 방법들은 적합하지 않다. 본 논문에서는 이런 문제를 해결하기 위해 해시 색인에 기반한 새로운 다차원 색인 구조인 다차원 해시 색인을 제안한다. 다차원 해시 색인은 해시 함수를 통해 데이터들을 유클리드 공간의 버킷들로 분류하여 색인을 생성하고 이후 탐색이 요청되었을 때 이용자 선호도에 따라 선택된 부분 차원의 공간을 탐색할 수 있는 해시 탐색 트리를 생성하여 효과적인 탐색을 수행한다. 실험 결과, 해당 기법은 R-tree와 비교하여 색인 생성에 있어 매우 큰 성능의 향상과 함께 탐색에서도 유사한 탐색 성능을 보이는 것을 확인할 수 있었다.

비대칭적 성능의 고용량 비휘발성 메모리를 위한 계층적 구조의 이진 탐색 트리 (A Hierarchical Binary-search Tree for the High-Capacity and Asymmetric Performance of NVM)

  • 정민성;이미정;이은지
    • 대한임베디드공학회논문지
    • /
    • 제14권2호
    • /
    • pp.79-86
    • /
    • 2019
  • For decades, in-memory data structures have been designed for DRAM-based main memory that provides symmetric read/write performances and has no limited write endurance. However, such data structures provide sub-optimal performance for NVM as it has different characteristics to DRAM. With this motivation, we rethink a conventional red-black tree in terms of its efficacy under NVM settings. The original red-black tree constantly rebalances sub-trees so as to export fast access time over dataset, but it inevitably increases the write traffic, adversely affecting the performance for NVM with a long write latency and limited endurance. To resolve this problem, we present a variant of the red-black tree called a hierarchical balanced binary search tree. The proposed structure maintains multiple keys in a single node so as to amortize the rebalancing cost. The performance study reveals that the proposed hierarchical binary search tree effectively reduces the write traffic by effectively reaping the high capacity of NVM.

Classification and Regression Tree Analysis for Molecular Descriptor Selection and Binding Affinities Prediction of Imidazobenzodiazepines in Quantitative Structure-Activity Relationship Studies

  • Atabati, Morteza;Zarei, Kobra;Abdinasab, Esmaeil
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2717-2722
    • /
    • 2009
  • The use of the classification and regression tree (CART) methodology was studied in a quantitative structure-activity relationship (QSAR) context on a data set consisting of the binding affinities of 39 imidazobenzodiazepines for the α1 benzodiazepine receptor. The 3-D structures of these compounds were optimized using HyperChem software with semiempirical AM1 optimization method. After optimization a set of 1481 zero-to three-dimentional descriptors was calculated for each molecule in the data set. The response (dependent variable) in the tree model consisted of the binding affinities of drugs. Three descriptors (two topological and one 3D-Morse descriptors) were applied in the final tree structure to describe the binding affinities. The mean relative error percent for the data set is 3.20%, compared with a previous model with mean relative error percent of 6.63%. To evaluate the predictive power of CART cross validation method was also performed.

공간 데이터베이스의 효율적인 검색을 위한 X-트리와 kd-트리의 병합 알고리즘 (An Integration Algorithm of X-tree and kd-tree for Efficient Retrieval of Spatial Database)

  • 유장우;신영진;정순기
    • 한국정보처리학회논문지
    • /
    • 제6권12호
    • /
    • pp.3469-3476
    • /
    • 1999
  • 공간적인 자료구조를 기반으로 하는 공간 데이터베이스에서는 일차원 색인구조와는 달리 공간객체들의 다차원적인 특성에 부합되는 새로운 색인구조가 요구되고 있다. 본 논문에서는 이러한 요구사항을 충족시키기 위하여 기존 다차원 색인구조들의 특징 분석을 통하여 공간 데이터베이스의 효율적인 검색을 위한 새로운 색인구조를 제안하였다. 기존 X-트리에서 슈퍼노드의 순차적인 검색방법의 개선과 방대한 슈퍼노드가 생성되는 경우에도 검색시간의 단축이 가능하도록 하기 위하여, 포인트 색인구조를 갖는 kd-트리를 X-트리에 병합시킨 색인구조를 제안하였다. 제안된 색인구조를 실제로 구현하여 실험 데이터의 차원과 분포에 따라 검색시간을 분석하였다.

  • PDF

Bayesian-based seismic margin assessment approach: Application to research reactor

  • Kwag, Shinyoung;Oh, Jinho;Lee, Jong-Min;Ryu, Jeong-Soo
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.653-663
    • /
    • 2017
  • A seismic margin assessment evaluates how much margin exists for the system under beyond design basis earthquake events. Specifically, the seismic margin for the entire system is evaluated by utilizing a systems analysis based on the sub-system and component seismic fragility data. Each seismic fragility curve is obtained by using empirical, experimental, and/or numerical simulation data. The systems analysis is generally performed by employing a fault tree analysis. However, the current practice has clear limitations in that it cannot deal with the uncertainties of basic components and accommodate the newly observed data. Therefore, in this paper, we present a Bayesian-based seismic margin assessment that is conducted using seismic fragility data and fault tree analysis including Bayesian inference. This proposed approach is first applied to the pooltype nuclear research reactor system for the quantitative evaluation of the seismic margin. The results show that the applied approach can allow updating by considering the newly available data/information at any level of the fault tree, and can identify critical scenarios modified due to new information. Also, given the seismic hazard information, this approach is further extended to the real-time risk evaluation. Thus, the proposed approach can finally be expected to solve the fundamental restrictions of the current method.

GIS와 VLSI Design을 위한 효율적인 공간 색인구조 (Efficient Spatial Index Structure for GIS and VLSI Design)

  • 방갑산
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.129-132
    • /
    • 2004
  • 공간 색인구조는 공간 데이터를 효율적으로 관리하기 위한 도구로써, GIS와 같은 공간 데이터베이스의 성능을 결정하는 중요한 요소라 하겠다. 대부분의 응용분야에서 공간 데이터베이스는 보조기억장치에 저장된 방대한 양의 공간데이터 처리를 요구하므로 디스크 접근의 수를 줄이는 것이 전체 데이터베이스의 성능을 향상시키는데 중요한 요소이다. 이 논문에서는 SMR-tree라는 공간색인구조의 여러 응용분야에서 활용 가능성을 기존의 색인구조들과의 비교를 통해 확인한다. SMR-tree는 R-tree 계열의 구조로써 기존의 R-tree계열의 구조들과 동일한 노드의 형태를 가지고 있으나, 여러 개의 data space를 사용하여 data object를 배분함으로써 $R^{+}-tree$의 말단노드 내에 존재하는 잉여공간을 제거하면서 R-tree의 단점인 색인노드들 사이에 중첩을 허용치 않는다. SMR-tree의 성능은 여러 종류의 테스트 데이터(VLSI layout data, Tiger/Line file data)를 사용하여 R-tree, $R^{+}-tree,\;R^{\ast}-tree$와 비교된다. SMR-tree는 높은 공간 활용도와 다른 색인구조에 비해 빠른 질의 성능을 보임으로써 GIS와 같은 공간 데이터베이스를 위한 효율적인 색인구조로 사용이 될 것으로 기대된다.

  • PDF

노드 이용률과 검색 속도 개선을 위한 비트 벡터 기반 공간 분할 색인 기법 (Bit-Vector-Based Space Partitioning Indexing Scheme for Improving Node Utilization and Information Retrieval)

  • 여명호;성동욱;유재수
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권7호
    • /
    • pp.799-803
    • /
    • 2010
  • KDB-트리는 다차원 데이터를 검색하기 위한 전통적인 색인 기법이다. 많은 연구에서 낮은 저장 공간 사용과 검색 성능이 KDB-트리군의 두 병목현상이라고 언급되고 있다. 데이터 삽입 순서와 데이터의 편향으로 인한 불필요한 공간 분할이 그 원인이다. 본 논문에서는 편향 데이터를 효율적으로 처리하고, 검색 성능을 향상시키기 위한 새로운 색인 구조인 $KDB_{CS}^+$-트리를 제안한다. $KDB_{CS}^+$-트리는 분할 정보를 비트벡터로 표현하는 압축 기법과 노드의 그룹화를 통한 포인터 제거 기법을 활용하여 중간 노드의 팬-아웃을 증가시키고, 중간 노드의 엔트리를 계층적으로 표현함으로써 중간 노드의 사용율을 높인다.

대용량 데이터의 내용 기반 검색을 위한 분산 고차원 색인 구조 (A Distributed High Dimensional Indexing Structure for Content-based Retrieval of Large Scale Data)

  • 최현화;이미영;김영창;장재우;이규철
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제37권5호
    • /
    • pp.228-237
    • /
    • 2010
  • 고차원 데이터에 대한 다양한 색인 구조가 제안되어 왔음에도 불구하고, 인터넷 서비스로서 이미지 및 동영상의 내용 기반 검색을 지원하기 위해서는 고확장성 지원 및 k-최근접점 검색 성능 향상을 지원하는 새로운 고차원 데이터의 색인 구조가 절실히 요구된다. 이에 우리는 다중 컴퓨팅 노드를 바탕으로 구축되는 분산 색인 구조로 분산 벡터 근사 트리(Distributed Vector Approximation-tree)를 제안한다. 분산 벡터 근사 트리는 대용량의 고차원 데이터로부터 추출한 샘플 데이터를 바탕으로 hybrid spill-tree를 구축하고, hybrid spill-tree외 말단 노드 각각에 분산 컴퓨팅 노드를 매핑하여 VA-file용 구축하는 두 레벨의 분산 색인 구조이다. 우리는 다중 컴퓨팅 노드들 상에 구축된 분산 벡터 근사 트리를 바탕으로 병렬 k-최근접점 검색을 수행함으로써 검씩 성능을 향상시킨다. 본 논문에서는 서로 다른 분포의 데이터 집합을 바탕으로 한 성능 시험 결과를 통하여, 분산 벡터 근사 트리가 기존의 고확장성을 지원하는 색인 구조와 비교하여 검색 정확도에 대한 손실 없이 더 빠른 k-최근접점 검색을 수행함을 보인다.