
1H*-tree:

*, *, *, *, *, *
*

e-mail : xiangrui_chen@yahoo.cn, cyxyuxiang@gmail.com,
{leeyeon,hermit,dwlee}@dblab.inha.ac.kr, hybae@inha.ac.kr

1H*-tree: An Improved Data Cube Structure for Multi-dimensional

Analysis of Data Streams

XiangRui Chen*, YuXiang Cheng*, Yan Li*, Song-Sun Shin*, Dong-Wook Lee*, Hae-Young Bae*
*Dept. of Computer Science and Information Engineering, Inha University

 (Abstract)

In this paper, based on H-tree, which is proposed as the basic data cube structure for multi-dimensional data
stream analysis, we have done some analysis. We find there are a lot of redundant nodes in H-tree, and the tree-
build method can be improved for saving not only memory, but also time used for inserting tuples. Also, to
facilitate more fast and large amount of data stream analysis, which is very important for stream research, H*-tree
is designed and developed. Our performance study compare the proposed H*-tree and H-tree, identify that H*-tree
can save more memory and time during inserting data stream tuples.

1 This research was supported by a grant (07KLSGC05) from Cutting-edge Urban Development - Korean Land Spatializat-
ion Research Project funded by Ministry of Construction & Transportation of Korean government.

1. Introduction

Nowadays, in the real-time surveillance systems,
telecommunication systems, and other application areas,
anomaly detecting is more important than high level
summary, which is related to the data stream on-line analysis.
As these environments always generate tremendous
(potentially infinite) amount of data stream [7], the data
structure for on-line, multi-dimensional analysis of data
stream becomes a challenging task. Similar to the role of data
cube architecture [1] in the analysis of data warehousing and
OLAP technology [9], stream cube architecture [3] is
proposed as the architecture for multi-dimensional analysis
of data streams, especially for anomaly detecting and unusual
patterns mining[8].

Most data streams are at low-level or multi-dimensional in
nature, and it requires more multi-level (ML) / multi-
dimension (MD) processing. Meet the new requirements of
stream OLAP, as referred in [4], stream cube belongs to the
concept of data cube, but it is a kind of selectively
materialized cube, which uses H-tree structure to store
computed cells. It has 3 significant features [5]: (1) tilted
time frame, (2) two critical layers: a minimal interesting
layer and an observation layer, and (3) partial computation of
data cubes by popular-path cubing. The stream data cubes so
constructed are much smaller than those constructed from the
raw stream data but will still be effective for multi-
dimensional stream data analysis tasks. It has been
successfully implemented in the MAIDS [6] project, and it is
proved that H-tree is still the most appropriate structure for

data stream since most other structures need to either scan
data sets more than once or know the sparse or dense parts
beforehand, which does not fit the single-scan and dynamic
nature of multi-dimensional data stream.

In this paper, Section 2 presents the H-tree structure and
lists 3 potentially big problems for research if the stream data
is very fast, with the growing size of stream cube resort in
memory. Based on this, in Section 3, we present an improved
data structure, H*-tree, which reserves the strong point of H-
tree, meets the new requirements and the problems analyzed
in Section 2. In Section 4, we give the performance study by
comparing the memory and time used for inserting growing
large scale of data sets with H-tree. At last, our previous
study is concluded in Section 5.

2. Related work

In this section, we introduce the concepts related to H-tree,
define the problems after examining of H-tree.

2.1 H-tree definition
As introduced in the Section 1, H-tree is used to store the

computed cells of stream cube. It is a hyper-tree structure,
and an example can be built like Figure 1.

As lack of space, we omit the tree-build steps, which you
may find in [4]. What we need to know, H-tree is the most
basic structure for stream cube as every coming multi-
dimensional data stream tuple should be inserted into the tree
by single-scan method first. So the efficiency of tuple insert
strategy should be considered more detailedly. What’s more
important, many other operations are based on the data

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

332

structure of H-tree, e.g. H-cubing [4]. It means that the
designing of H-tree should be more carefully. We examined
H-tree and find there are 3 problems which can be improved
as follows.

MarFeb

BeijingSeoul Rome Seoul

P P P

P

P P P

Jan

Quant-info

P

Time

Location

P P P PNo. 4001 No. 4002 No. 4003 No. 4002 Item

Measure

Data stream

Jan
Feb
Mar

Seoul
Rome
Beijing

No. 4001
No. 4002
No. 4003

(12 months)

(100 citys)

(1000 ids)

Header Table ROOT

(Figure 1) H-tree structure

2.2 Problems existed in H-tree
Although the novel features of H-tree [4], construction

cost, completeness and compactness can fulfill the
emergency of unbounded data stream. But there are still
some improvements can be implemented.

2.2.1 Potentially redundant nodes
Review Figure 1, examining the tree-build method in [4],

we give a tuples insert example. Since the first tuple, (Jan,
Seoul, No. 4001, 200), is inserted into the H-tree, it creates 3
nodes and the num 200 is stored in Quant-info in the leaf. If a
tuple as (Jan, Seoul, No. 4001, 100) is comes, it can share the
path built for the first tuple, saving memory in a way (the
whole tree resides in memory), but if a third tuple, (Feb,
Seoul, No. 4003, 300) arrives, it will create another node
labeled ‘Seoul’ in the second layer (we take the root as 0
layer) in the tree. As a result, in the second layer, the second
‘Seoul’ node can be considered as a redundant node if the
first created one can be shared when we redesign the tree
structure. What’s more, considering the preprocessed data
stream which will arrive the stream cube, the cardinality of
the first attribute ‘Time’ is 12 (months), the cardinality of the
second attribute ‘Location’ is 100 (cities), and the cardinality
of the third attribute ‘Item’ is 1000 (product ids). Reasoning
following H-tree structure, for 1000+x tuples, there are at
least x redundant nodes in the second layer. As the layers
(dimensions) in H-tree are designed in cardinality-ascending
order, if data stream tuple contains more attributes, which
means that there are more layers in the H-tree. Considering
the cardinality of every attribute, the deeper the tree will be,
the more redundant nodes there are in the tree.

H-tree is stored in the limited memory for stream cube,
with the growing size of data stream arrived, more and more
redundant nodes will waste the memory to a large extent.
Although the problem is not considerable when the data size
is not very large, in real environments, redesigning the tree
structure is still necessary. We will give a new tree structure,
H*-tree in Section 3.

2.2.2 Delaying of on-line analyzing
H-tree is constructed dynamically and real-timely [4], it

means that the detailed H-tree building process totally
depends on the data stream received. It seems that this
method can save memory in a way. Is it true? In our opinion,
it is only ‘true’ to limited extent, when the data size is not
very large. As the data stream for analysis is always
continuously and unboundedly, considering the worst case,

the complete tree, as example shown in Figure 2, will be
finally built during the analyzing period. Then, the problem
comes forth, for anomaly detecting and other on-line analysis
of data stream, the time and memory spent on creating H-tree
during analyzing period will affect the result quality of
analysis to some extent. For example, the result maybe not
very accurate, or the anomaly will not be detected in time
because of delaying of creating tree [8]. So when to build the
tree? How to make the analysis result more exactly and in
time, especially for anomaly detecting? We will answer these
questions in Section 3.

(Figure 2) Complete H-tree structure

2.2.3 The randomly layout of layers
As discussed above, H-tree is constructed dynamically

and real-timely. The layout of every layer is randomly,
according to the order of tuples arrived. Reviewing the insert
method of a new tuple [4], take (Jan, Rome, No. 4052, 265)
for example, it will first retrieve the existed nodes in the first
layer, searching for the node labeled ‘Jan’. If returns ‘true’,
similarly, it will retrieve the existed nodes in the second layer,
searching for the node labeled ‘Rome’, recursive like this in
every layer.

Examining this inserting method, focus on the retrieving
of existed nodes at every level, there are some improvements
can be done. Take the nodes existed in a level as a list of
numbers, if we want to retrieve a number equals x, which
kind of layouts maybe better, randomly or orderly? For
randomly layout, ‘sequence search’ is the only option for best
performance. But for orderly layout, ‘binary search’ is the
best choice as the time used will be much shorter compared
with any other method, including ‘sequence search’. Then, it
comes forth the question, is it possible to make the layout of
every layer in H-tree orderly? Maybe it is possible. We have
not proved the possibility, but if possible, it will be very
difficult because H-tree is constructed dynamically and real-
timely. In Section 3, we will present another data structure,
H*-tree, the layout of every layer in which is orderly.

3. H*-tree definition

In this section, we solve the problems defined in Section 2
and present an improved data structure, H*-tree based on H-
tree, which will be more cost-effective for analyzing multi-
dimensional data streams.

In the real environment, as the tree used in stream cube is
constructed in a cardinality-ascending order, the row data
stream must be formatted to the tuple that will insert into the
tree. As we can define the format before analyzing, we know
how many attributes there will be in one tuple, and it equals
the number of levels in the tree. Also, we know the
cardinality of every attribute in the tuple. With this kind of
important information, we can create the complete (Figure 2)
tree directly before analyzing, answering the question in

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

333

2.2.2. But as discussed before in 2.2.1, constructing a
complete H-tree will no doubt contain too many redundant
nodes, which waste a large scale of limited memory, and the
waste size will grow up on the fly with the growing of the
attributes number in a tuple. What’s more, considering the
problem presented in 2.2.3, the insert time will also grow up
a lot. So, redesigning the tree structure and share nodes in the
same layer is greatly needed, and the H*-tree we designed is
as follows in Figure 3.

Data stream

Adana Adelaide

P

P P

Jan

P PNo. 4001 No. 4002

Yerevan Yokohama

P

P P

Dec

P PNo. 4999 No. 5000
(996 nodes)

(10 nodes)
Time

Location

Item

Measure

(12 months)

(100 citys)

(1000 ids)

(random num.)

(96 nodes)

ROOT

P

(Figure 3) Complete H*-tree

As shown above, in the complete H*-tree example, there
are 1+12+100+1000=1113 nodes. But in the complete H-tree
example (Figure 2), totally, there are 1 + 1*12 + 1*12*100 +
1*12*100*1000 = 1201213 nodes, compared with H*tree,
there are 1200100 redundant nodes, which is more than 1000
times of the really needed nodes. Also, compared with Figure
1, there will be no Header Table or side-link in memory,
which will also save the limited resource in a way.

Besides, as described in 2.2.3, we can make the layout of
every layer in H*-tree structure orderly during tree building
period, which will make the insertion of data stream tuples
more efficiently comparing with H-tree.

4. Performance study

In this section, we implement the H-tree proposed in [4]
and H*-tree proposed in Section 3. By inserting data tuples
continuously, we give the performance study of them. The
data sets used for test is dynamically generated by the data
generator we designed, and for better testing, we specify 10
different tuple sizes from 1,000 to 20,000 and tested 10 times.

All experiments were conduced on a 1.8 GHz Pentium 4
PC with 1.25 GB main memory, running Microsoft-XP
Professional. All the methods were implemented using
Microsoft Visual C++ 6.0.

The performance results of H*-tree and H-tree are
reported by recording the memory and time usage for
inserting tuples as following analysis, which is the very
important angles for the considering and designing of data
structure used in stream cube.

Figure 4 shows the processing time usage for inserting
tuples, with the increasing size of the data tuples. Since H-
tree creates tree dynamically and the layout of every layer is
randomly, which is not good for retrieval nodes existed in the
layer, the total insert time of H-tree is much higher than H*-
tree. With the growing of data tuples amount, the gap
between two trees is more and more wide, which can be seen
from the trend of the curves. Also, Figure 5 shows the
processing memory usage for inserting tuples, with the
increasing size of the data tuples. As a result of H-tree’s
limitation presented in Section 2, the size of memory used

grows rapidly with the growing of tuple size. To the opposite,
as there is no redundant nodes in H*-tree, the memory usage
curve is steady and not very high.

(Figure 4) Time usage for tuples insertion

(Figure 5) Memory usage for tuples insertion

What need to be further discussed, shown in Figure 5, two
curves have a point of intersection. As we have explained in
2.2.1, according to the data structure of H-tree, the
dynamically tree-build method can save memory in a way,
when the tuple size arrived is not very large (under 10,000 in
Figure 5, if the PC performance is better, maybe it can be
much higher), and the number of H-tree nodes existed in
memory will not be very big, to the opposite, as we designed
in H*-tree, we will build the complete tree in memory before
inserting tuples, all the H*-tree nodes will exist from the very
beginning of the test. Then, it will use more memory than H-
tree at first. But obviously, with the growing of tuples
number, there will be more and more nodes created in H-tree
(contains more redundant nodes), and no ‘new’ node in H*-
tree. As a result of this, after a threshold, H-tree will hold
more memory compared with H*-tree, the memory usage
curve will also be not stable and in a much more fast growing
trend, comparing with H*-tree.

5. Conclusions

In this paper, we have analyzed the H-tree data structure
used in stream cube [4], and proposed a more feasible and
cost-effective data structure, H*-tree. By performance study,
comparing the memory and time usage between H*-tree and

1 2 3 4 5 7 10 13 17 20

1 2 3 4 5 7 10 13 17 20

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

334

H-tree, we confirmed that potentially large amount of
redundant node is the essential and direct reason why the
memory usage curve of H-tree grows so fast, and
dynamically tree-build method, randomly layout of tree-layer
are the essential reasons why the time usage curve of H-tree
is much high than H*-tree. All these problems can be solved
using the improved tree structure, H*-tree.
 Now, we are sure that the new data structure, H*-tree, is a
better choice for on-line analyzing of multi-dimensional data
stream. And in the future, more research works related to the
multi-dimensional analysis of data stream can based on, H*-
tree, the fundamental data structure of stream cube.

Reference

[1] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D.
Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh,
“Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab and Sub-Totals,” Data
Mining and Knowledge Discovery, vol. 1, pp. 29-54,
1997.

[2] J. Han, J. Pei, G. Dong, and K. Wang, “Efficient
Computation of Iceberg Cubes With Complex Measures,”
Proc. ACM-SIGMOD Int'l Conf. Management of Data
(SIGMOD '01), pp. 1-12, May 2001.

[3] Y. Chen, G. Dong, J. Han, B. Wah & J. Wang, “Multi-
dimensional Regression Analysis of Time-series Data
Streams,” VLDB 2002.

[4] Y. Chen, G. Dong, J. Han, J. Pei, B. W. Wu, and J. Wang.
Online analytical processing stream data: Is it feasible?
[C]. DMKD 2002.

[5] J. Han, Y. Chen, G. Dong, J. Pei, B.W. Wah, J. Wang, and
D. Cai, “Stream Cube: An Architecture for Multi-
Dimensional Analysis of Data Streams,” Distributed and
Parallel Databases J., 2005.

[6] Y. Dora Cai, D. Clutter, G. Pape, J. Han, M. Welge, L.
Auvil. “MAIDS: Mining Alarming Incidents from Data
Streams,” ACM-SIGMOD Int'l Conf. Management of
Data (SIGMOD '04), June, 2004.

[7] Babcock B., Babu S., Datar M., Motwani R., and Widom
J. “Models and issues in data stream systems,” In
Phokion G. Kolaitis, editor, Proceedings of the 21nd
Symposium on Principles of Database Systems, pages 1-
16. ACM Press, 2002.

[8] Geoff Hulten, Pedro Domingos. “Catching up with the
data: research issues in mining data streams,” In Proc. of
Workshop on Research issues in Data Mining and
Knowledge Discovery, 2001.

[9] E.F. Codd et al., “Providing OLAP(On-line Analytical
Processing) to User-Analysts: An IT Mandate,” Available
from Arborsoft’s Web Site(http://www.arborsoft.com).

제30회 한국정보처리학회 추계학술발표대회 논문집 제15권 제2호 (2008. 11)

335

