
H*-tree/H*-cubing: 데이터 스트림의 OLAP를 위한 향상된 데이터 큐브 구조 및 큐빙 기법 475

H*-tree/H*-cubing: 데이터 스트림의 OLAP를 위한

향상된 데이터 큐브 구조 및 큐빙 기법

심 상 예
†
․이 연

††
․이 동 욱

††
․김 경 배

†††
․배 해 영

††††

요 약

데이터 큐브는 다차원 데이터 분석 및 멀티레벨 데이터 분석에 많이 사용되고 있는 중요한 데이터 구조이다. 최근 데이터 스트림의 온라인

분석에 대한 수요가 증가하면서 스트림 큐브, Flow 큐브, S-큐브 등의 다양한 데이터 큐브 구조와 기법이 제안되었다. 그러나 기존 기법들은

데이터 큐브 생성 시 고비용이 요구되는 단점을 가지고 있어 효과적인 데이터 구조, 질의 방법 및 알고리즘에 대한 연구가 필요하다. 스트림

큐브 기법에서는 H-큐빙 기법을 사용하여 큐보이드를 선택하고, 계산된 셀들을 인기 패스에 있는 큐보이드들로 구성된 H-트리에 저장한다. 그

러나 스트림 큐브 기법에서는 H-트리에 데이터를 비순차적으로 삽입하기 때문에 H-큐빙 기법을 사용하여 질의를 처리할 때 제한성을 갖고 있

다. 본 논문에서는 데이터의 트리 구조의 각 층에 대한 인덱스를 구축하여 스트림 데이터에 대한 빠른 삽입 연산을 지원하는 H*-tree 구조와,

popular-path에 존재하지 않는 큐보이드를 빨리 계산하여 스트림 데이터에 대한 빠른 애드 혹 질의 응답을 지원하는 H*-cubing 기법을 제안한

다. 성능평가를 통하여 제안한 H*-tree 기법은 보다 적은 큐브 구축 시간을 지원하며, H*-cubing 기법이 stream cube 기법보다 빠른 애드 혹

질의 응답 시간을 소요하며, 보다 적은메모리를 사용함을 보여준다.

키워드 : OLAP, 데이터 스트림, 데이터 큐브, Ad-Hoc질의 처리

H*-tree/H*-cubing: Improved Data Cube Structure and Cubing Method for

OLAP on Data Stream

Xiangrui Chen
†
․Yan Li

††
․Dong-Wook Lee

††
․Gyoung-Bae Kim

†††
․Hae-Young Bae

††††

ABSTRACT

Data cube plays an important role in multi-dimensional, multi-level data analysis. Meeting on-line analysis requirements of data

stream, several cube structures have been proposed for OLAP on data stream, such as stream cube, flowcube, S-cube. Since it is costly

to construct data cube and execute ad-hoc OLAP queries, more research works should be done considering efficient data structure, query

method and algorithms. Stream cube uses H-cubing to compute selected cuboids and store the computed cells in an H-tree, which form

the cuboids along popular-path. However, the H-tree layoutis disorderly and H-cubing method relies too much on popular path.In this

paper, first, we propose H*-tree, an improved data structure, which makes the retrieval operation in tree structure more efficient. Second,

we propose an improved cubing method, H*-cubing, with respect to computing the cuboids that cannot be retrieved along popular-path

when an ad-hoc OLAP query is executed. H*-tree construction and H*-cubing algorithms are given. Performance study turns out that

during the construction step, H*-tree outperforms H-tree with a more desirable trade-off between time and memory usage, and H*-cubing

is better adapted to ad-hoc OLAP querieswith respect to the factors such as time and memory space.

Keywords : On-line Analytic Processing(OLAP), Data Stream, Data Cube, Ad-Hoc Query Answering

1. Introduction 1)

Nowadays, in manufacturing processes, network security,

†준 회 원 :인하대학교 정보공학과 석사과정
††준 회 원 :인하대학교 정보공학과 박사과정

†††종신회원:서원대학교 컴퓨터교육과 조교수
††††종신회원:인하대학교 컴퓨터공학부 교수

논문접수: 2008년 11월 17일
수 정 일 : 1차 2009년 4월 28일
심사완료: 2009년 5월 20일

real-time traffic surveillance, and many other kinds of

practical areas, data is generated in huge volume,

unbounded, time-varying, flowing in-and-out dynamically,

and changing rapidly. This kind of potentially infinite data

is called data stream [1]. Due to the limited resources

available in today’s computer science technology (e.g.

memory, disk, etc.), during the processing of data stream,

it may be impossible to store an entire data stream or to

DOI: 10.3745/KIPSTD.2009.16-D.4.475

476 정보처리학회논문지 D 제16-D권 제4호(2009.8)

scan through it multiple times due to its tremendous

volume. Although research on data stream, from storage

to indexing, from querying to mining, has been a hot

topic fora long time, research with On-line Analytical

Processing (OLAP) [2] on data stream is still in its

infancy, efficient data structure, cubing method and

validated algorithms are needed.

Most of data stream resides at rather low level of

abstraction in different application areas,where as analysts

are often more interested in higher and multiple levels of

abstraction [3]. This new requirement and the success of

OLAP technology naturally leads to the new research

branch, OLAP on data stream, which absolutely differs

from the traditional database techniques as they always

solely dependon the static and disk-archived data.

Obviously, because of the characteristics and restrictions

of on-line data stream analysis, mostprevious studies on

data stream are not applicable in the field of stream

OLAP. Reviewing relevant traditional data warehousing

and OLAP techniques, data cube [4] becomesthe essential

component in most data warehouse systems and has been

playing an important role in multi-dimensional multi-level

data analysis.“Is it possible to construct a new cube to

facilitate the OLAP on stream?” Answering this question,

the framework of stream cube is set and proposed as a

general data cube structure for stream OLAP [3, 5, 7].

Different from previousresearch works on stream query

processing and data stream mining, this framework focus

more on the multi-dimensional and multi-level on-line

analysis of data stream. Stream cube is a kind of

partially materialized cube, using H-cubing to compute

the selected cuboids and H-tree to store the computed

cells [6], which form the cuboids along popular-path. On

a macro level, to facilitate fast on-line multi-dimensional

analysis of data stream, stream cube is composed of

three important techniques: (i) tilted time frame – a

multi-resolution model to register time-related data which

ensures the low memory and disk space usage, (ii)

critical layers – a minimal interesting layer (m-layer)

and an observation layer (o-layer) which optimize the

cubing method according to the interests of analyzer, (iii)

novel data stream cubing method based on popular-path

which makes a reasonable trade-off between space,

computation time and flexibility.

During OLAP, it is alwaysrequired to answer ad-

hocaggregate queries over data streams. Considering this

challenging task, prefix aggregate tree (PAT) is proposed

and aimed to facilitate online warehousing [8]. Although it

can be regarded as an extension of H-tree to support

aggregation queries for data stream, there are still some

potential problems should be discussed. First, different

from H-tree, it does not take into account the concept

hierarchy. This will make the multi-dimensional multi-

level OLAP analysis impossible. Second, high level data

should be stored in data warehouse for stream OLAP.

On the contrary, PAT needs to delete records in the tree

during dynamical incrementally maintaining with the

incoming of data stream without any backup operations.

Third, compared with previous proposed approximate

methods for aggregate queries, PAT commits to provide

accurate answers, which may not always be necessary in

reality, considering the semantics of OLAP. Consequently,

as an extension of H-tree, it can not be successfully

adopted for OLAP on data stream without improvements.

Instead, our goal is to provide an improved structure that

can be directly used in stream OLAP.

Recently, except for stream cube, there are severalother

cube-structures and data-warehouse has been proposed to

support OLAP on stream-like data. For example, the

flowcube referred in [9] and RFID warehouse given in

[10], which focus on the multi-dimensional analysis of

commodity flows. Another example is the sequence data

cube (S-cube) and sequence cuboids introduced in [11],

composed of which, another prototype system named

“Sequence OLAP” is able to support “pattern-based”

grouping and aggregation for OLAP on sequence data.

Actually, these two cubes are both devised to facilitate

special application cases.

Following the steps of stream cube research, we

examine and improve this fundamental framework to

some extent, with respect to the limitation of response

time and memory space. Considering the semantics of

OLAP on data stream, first, by running numerous

experiments on real datasets, we are able to extend

H-tree to H*-tree, which plays the role of in-memory

data structure for storing and computing stream cube.

Unlikethe disorderly layout of H-tree, H*-tree is more

regularly as every layer is indexed by a “binary tree”.

Within this indexed structure, the efficiency of tree

construction and most query answering can be improved

a lot as they both need to retrieve some cells in the tree.

In fact, the cause is that the regularly indexeddata

structure is always better adapted than disorderly ones.

Second, we proposed a novel cubing method, H*-cubing.

Reviewing H-cubing, it aims to answer OLAP queries

based on the pre-materialized cuboids along popular-path.

However, examining some OLAP queries when the

inquired cuboids can not be found along popular-path, the

H*-tree/H*-cubing: 데이터 스트림의 OLAP를 위한 향상된 데이터 큐브 구조 및 큐빙 기법 477

Central data warehouse Online data
warehouse

Data in the futureThe historical segment The transient segment

The data stream

archive Sliding window
Online update/maintain

(Fig. 1) The framework of warehousing data streams

12 months

Time Now

31 days
…

24 hours
…

4 qtrs

(Fig. 2) A tilt time frame model

(A1,B1,C1)

(A1,B2,C 1) (*,B1,C1) (A1,B1,C2)

(A1 ,*,C1) (*,B2,C1) (A1,B2,C2) (*,B1,C2)

(*,*,C1) (A1,*,C2) (*,B2,C2)

(*,*,C2)o-layer

m-layer

(Fig. 3) Stream cube structure from m-layer to o-layer

method in H-cubing “to compute use base cuboid at

m-layer” is inefficient. To maximally use the materialized

cuboids, H*-cubing is expected to compute using the

most approximate cuboids that can be found. This

strategy shortened the computing time to some extent by

utilizing the pre-computed cuboids. Third, relevant

algorithms have been given and implemented in this

paper. During the performance study, it turns out that

H*-tree outperforms H-tree, and H*-cubing is better

adapted to answering stream OLAP queries compared

with H-cubing, with respect to the factors such as

response time and memory space usage.

The rest of the paper is organized as follows. In

section 2, the potential problems exist in stream cube are

defined. Section 3 describes H*-tree and gives the

construction algorithm. Section 4 is dedicated to present a

new algorithm for answering OLAP queries, H*-cubing,

focusing on the queries related to some cuboids that can

not be found along popular-path. We evaluate the

effectiveness of H*-tree and H*-cubing in Section 5

based on the experiments with real datasets. Finally,

thepaper is concluded in section 6.

2. Related Work

Our work is related to OLAP on data stream, and the

most relevant work to ours is stream cube [3]. Although

novel features of stream cube, low construction cost,

completeness and compactness well fulfill the challenges

of unbounded data stream [3], it still can be improved for

more efficient processing. For instance, in stream cube,

H-cubing is used to compute the selected cuboids and

H-tree is adopted to store the computed cells. But it is

unclear how H-tree can be stored and incrementally

maintained effectively for data streams, and the same

question has been put forward in [8]. In this section, we

will explain these potential unsolved problems exist in

stream cube and related concepts.

2.1 OLAP on Data Stream

Reviewing the characteristics of data stream, massive,

temporally ordered, varying, and potentially infinite, although

research with it has been a hot topic for a long time [1],

most of them only focus on the indexing and query

answering, not includingthe analysis of data stream or

data stream warehouse. Also, traditionalOLAP and data

mining methods typically require multiple scans of data

and are therefore infeasible for data stream applications.

Naturally, the framework of stream cube is devised to

facilitate multi-dimensional multi-level analysis of data

stream [3]. Meanwhile, for OLAP, a framework of

warehousing data steams is also needed, and in the

framework shown in (Fig. 1) [8], a data stream is divided

into two segments: the transient segment and the

historical segment. All these works are intended to

address the research issues of multi-dimensional OLAP

on data stream.

In the design of stream cube, within the tilt time

frame model, shown in (Fig. 2), one can register time at

different levels of granularity.

Also, two critical cuboids (m-layer, o-layer) are

identified due to their conceptual and computational

importance in stream data analysis. Since stream cube is

devised as partial materialized structure, the pre-

aggregation computation will be along the popular-path

by rolling up a computed cuboid residing at the closest

lower level. Here, we present these ideas using an

example.

[Example 1]

As the stream cube shown in (Fig. 3), suppose the

stream data to be analyzed contains3 dimensions, A, B, C.

Meanwhile, each dimension has 2, 3, 3 levels of

478 정보처리학회논문지 D 제16-D권 제4호(2009.8)

a) A: A1 < * b) B : B1 < B 2 < *

c) C: C1 < C2 < *

*

*

*

B21 B22 B23

B11 B15B14 B16B12 B 13A 12 A 13A11

C 19C 18C17C16C15C14C13C12C11

C 25C24C2 3C 22C21

(Fig. 4) Concept hierarchy of the dimensions

time C2 A1 B2 C1 B1 measure

t1 C22 A12 B21 C17 B12 2

t2 C21 A11 B23 C11 B15 1

t3 C24 A13 B22 C13 B14 3

t4 C23 A12 B23 C16 B16 3

t5 C23 A13 B22 C15 B14 5

t6 C23 A12 B22 C15 B13 1

t7 C23 A13 B21 C15 B11 4

t8 C23 A13 B23 C13 B13 8

t9 C23 A13 B23 C17 B14 7

t10 C23 A13 B23 C17 B15 5

t11 C23 A13 B23 C17 B13 9

t12 C23 A13 B23 C11 B16 6

t13 C23 A13 B23 C17 B15 7

……

<Table 1> Base info table for m-layer data

abstraction respectively, as (A1, *), (B1, B2, *), (C1, C2, *),

and * represents the highest level of abstraction. Obviously,

it forms a high-to-low hierarchy, where the ordering is

“* > A1”, “* > B2 > B1”, and “* > C2 > C1”. In this

cube, (A1, B1, C1) and (*, *, C2) are specified as the

minimal interesting layer (m-layer) and the observation

layer (o-layer). According to the semantics of stream

cube, from m-layer (the bottom cuboid) to o-layer (the

top-cuboid), there are in total 2×3×2 = 12 cuboids in this

example. Suppose the popular-path (drilling path) have

been given by user or experts, the darkened path in red

shown in (Fig. 3) represents the path along which the

drilling-down operation will be executed, (*, *, C2) →

(A1, *, C2) → (A1, B2, C2) → (A1, B2, C1) → (A1, B1, C1).

2.2 Disorderly Layout of Layers in H-tree

As referred above, stream cube is proposed to support

on-line, multi-dimensional analysis of data stream. After

examining this structure taking into account the

characteristics of data stream carefully,on a macro level,

we firmly believe this is a well-devised cube structure

for OLAP on data stream. However, on a micro level,

there is a potential problem exists in H-tree, the

disorderly layout of every layer.

According tothe semantics of H-tree, all the concept

levels of each dimension involved in the popular-path will

be located in different levels of H-tree, and the nodes of

each level will store the computed cell values, which then

form the corresponding cuboids in stream cube. Moreover,

the order of the down-to-top cuboids stored in H-tree

levels solely depends on the low-to-high order of the

cuboids along popular-path. The order of top-to-down

layers involved in H-tree only depends on the

high-to-low appearance order of the dimensions along

popular-path. As to describe the problem clearly, here we

first give an H-tree construction example as follows:

[Example 2]

Suppose we want to construct an H-tree for the cube

shown in (Fig. 3), first, we define the concept hierarchy

of A, B and C as shown in (Fig. 4)Obviously, the cardinality

of A1, B1, C1, B2, C2 is 3, 6, 9, 3, 5 respectively.

Reviewing (Fig. 3), (A1, B1, C1), (*, *, C2) is specified as

the m-layerand o-layer. The high-to-low drilling path: (*,

*, C2) → (A1, *, C2) → (A1, B2, C2) → (A1, B2, C1) →

(A1, B1, C1) is specified as the popular-path. And the

top-to-down order in H-tree is: root → C2 → A1 → B2

→ C1 → B1. Then, the nodes in B1, C1, B2, A1, C2 levels

will be used to store the cells of (A1, B1, C1), (A1, B2,

C1), (A1, B2, C2), (A1, *, C2), (*, *, C2) respectively, which

then form the corresponding cuboids.

What’s more, according to the “critical layer” feature of

stream cube, the raw data stream will be firstly

generalized to the schema of m-layer, (A1x, B1y, C1z). And

then, according to the H-tree construction method, the

firstly generalized data should secondly be extended to

the schema as the top-to-down layer order in H-tree,

(C2a, A1x, B2b, C1z, B1y). A base info table for m-layer

data example, which holds the values, is shown in

<Table 1>.

Let’s consider the first tuple t1(A12, B12, C17, 2) as an

example, which isgeneralized to m-layer schema from

raw data stream. According to (Fig. 4), the value of B1

(B12) belongs to the conception of B2’s value (B21), and

the value of C1 (C17) belongs to the conception of C2’s

value (C24). As a result, (A12, B12, C17) should be secondly

extended to (C24, A12, B21, C17, B12). After the generalization

of every tuple has been done, it can be used to construct

the H-tree. Given base info in <Table 1>, an H-tree can

be built shown in (Fig. 5):

H*-tree/H*-cubing: 데이터 스트림의 OLAP를 위한 향상된 데이터 큐브 구조 및 큐빙 기법 479

C22

Su m
Cn t

12
2

B15 info

Laye r 1 (C2)
Store (* , *, C2)

Root

A 12

B12

C17

B21

Layer 2 (A1)
Store (A 1, *, C2)

Layer 3 (B2)
Store (A1, B2, C2)

Layer 4 (C1)
Store (A 1, B2, C1)

Layer 5 (B1)
Store (A 1, B1, C1)

C21

A11

B15

C11

B23

C24

A13

B14

C13

B22

C23

A12

B16

C 16

B 23

A13

B14

C15

B22

B13

C15

B2 2

B11

C15

B21

B13

C 13

B23

B 14

C 17

B15B13B 16

C11 Su m
Cn t

28
4

C17 info

Su m
Cn t

42
6

B23 info

Su m
Cn t

51
8

A 13 info

Su m
Cn t

55
10

C23 info
C21
C22

…
A11
A12
…
B21
B22

…
C11
C13

…
B11
B12
…

Hea der table side link

(Fig. 5) H-tree structure for stream cube computation (except for the 5 nodes in each layer, the computed

info of other nodes are omitted)

From Example 2 presented above, we may find H-tree

is well adapted to stream OLAP compared with other

tree structure since it takes into account the concept

hierarchy, which is the essential component of multi-

dimensional multi-level analysis in OLAP. However, there

is a potential problem should be discussed against this

compact tree, disorderly layout of every layer. Every time

when a new tuple incomes, take t13(C23, A13, B23, C17, B15,

7) for example, it will first retrieve the existed nodes in

the first layer (C2) for the node labeled ‘C23’. If it returns

‘true’, t13 will share the found node, or else, it will create

a new node labeled C23. Similarly, it will retrieve the

existed nodes in the second layer (A1), searching for the

node labeled ‘A13’ in the children nodes of C23, and the

steps will recursive like this in every other layer. On one

hand,this dynamic construction method can save memory

to some extent, comparing with constructing complete

H-tree before insertion. However, on the other hand,

efficiency of the retrieval for existed nodes at every so

constructed level will be a potential bottleneckfor OLAP,

especially with the growing cube size and H-tree levels

(the length of popular-path). Understandably, the essential

cause of this bottleneck is just the problem, disorderly

layout of every layer. Then, it comes forth the question,

if we want to retrieve a specified node in a layer, which

kind of layouts maybe better, disorderly, orderly or with

some index? For disorderly layout, mostly ‘sequence

search’ is the best option. For orderly layout, ‘binary

search’ is the best choice. Besides, the layout with

“binary tree” index also facilitates node retrieval.

Considering the third option, we will adopt “binary tree”

as the indices for every layer of H*-tree in Section 3.

2.3 Ad-hoc Query Answering Efficiency

For stream cube, based on H-tree, the algorithm for

ad-hoc query answering is called H-cubing, first given in

[7] and later revised in [3] for online processing of

stream OLAP query. Considering H-cubing [3], it aims to

answer OLAP queries based on the pre-materialized

cuboids along popular-path. However, examining some

OLAP queries when the inquired cuboids can not be

found along popular-path, the method in H-cubing “to

compute use base cuboid at m-layer” is inefficient.

For a multi-dimensional multi-level stream query, it

always specifies a few instantiated constants and inquired

information corresponding to one or some dimensions.

Consequently, for simplicity, an OLAP query can be

considered involving a set of instantiated dimensions, {Di,

…, Dk}, and a set of inquired dimensions, {Dl, …, Dp}.

The query is then abstracted to a set of relevant

dimensions, Dr, which is the union of the sets of

instantiated dimensions and the inquired dimensions [3].

For maximal use of the pre-computed cells stored in

every layer of H-tree, one needs to find the highest-level

popular-path cuboids that contain Dr. If the relevant

cuboids are found, the computation can be performed by

selecting the relevant data info from the so found cuboids

and return results. However, as a matter of fact,

sometimes we can not find the relevant cuboids for

ad-hoc OLAP queries along popular-path. Although the

algorithm described in [3] proposed a solution, “to use the

base cuboid at the m-layer to compute it”, the

pre-computed cells in the lower level have not been

maximal usedeither. Meanwhile, taking into account the

problem “disorderly layout of every layer” defined, when

480 정보처리학회논문지 D 제16-D권 제4호(2009.8)

C22

A 12

B 12

C17

B21

C21

A 11

B15

C11

B23

C24

A 13

B14

C13

B22

C23

A 12

B16

C16

B23

Layer 1 (C2)
Store (*, *, C2)

Layer 2 (A1)
Store (A 1, *, C2)

Layer 3 (B2)
Store (A 1, B2, C2)

Layer 4 (C1)
Store (A 1, B2, C1)

Layer 5 (B1)
Store (A 1, B1, C1)

Root

(Fig. 6) H*-tree structure for stream cube computation

the popular-path is very long, which means the height of

H-tree is considerable, the solution “to use the base

cuboid at the m-layer to compute it” will possibly affect

the efficiency and ad-hoc query answering quality,

increasing the respond time to some extent. Meet this

problem and to maximally use the materialized cuboids,

we proposed a new cubing method, H*-cubing, whichis

expected to compute using the most approximate cuboid

that can be found. In section 4, we will give a detailed

introduction about it.

Overall, although stream cube has been implemented in

the MAIDS project [12], our task is to make it more

efficient and fantastic.

3. Indexing scheme of H*-tree

In this section, we devise the compact data structure,

H*-tree. Also, we give the algorithm to construct

H*-treeand compare it with relevant works.

3.1 Data Structure

Reviewing Example 2, let the generalized data stream

be S (T, C2, A1, B2, C1, B1, M), where T and M are the

attributes of time-stamps and measure respectively. The

first 13 tuples are shown in <Table 1>, and aggregate

function Sum and Cnt areadopted, by aggregating which

we can also get the aggregated value Avg (Sum / Cnt).

In fact, when S arrivesm-layer, the attribute T is to

facilitate the storing and aggregation based on titled time

frame in every node, and the value of attribute M will be

stored and aggregated in every node. Consequently, we

can ignore the time-stamps and measures and construct

an H*-tree. For instance, tuples t1, t2, t3, t4, can be

organized into an H*-tree shown in (Fig. 6) In order to

store the information about the time-stamps and

measures, we can register the raw information at the leaf

node and the pre-computed cells in the non-leaf nodes.

Each node has an aggregated info table, so that the

time-stamps and the aggregates by tuples can be

registered.

3.2 H*-tree Construction Steps

For simplicity, given base info in <Table 1>, an H*-tree

can be built following steps, briefly illustrated in (Fig. 7):

1. H*-tree has a root node “null”, and the top-to-down

order of dimensions is also depend on the appearance order

along popular-path, root→C2 →A1 →B2 →C1 →B1.

2. A header table is created, in which each entry

represents the attribute-value of every dimension appears

in the specified popular-path. This is used to link nodes

that have the same label in every layer of H*-tree.

3. The first tuple, t1 = (C22, A12, B21, C17, B12, 2), is

inserted into H-tree, with five nodes, C22, A12, B21, C17,

and B12 inserted in sequence to form the first branch,

shown in (Fig. 7) a), and the measure info in the leaf

(B12). Also, they are linked to head table by the side

links. Suppose the value user interested is the average

measure, as to pre-compute the other cuboids stored in

the upper levels, the m-layer value (sum = 2, cnt = 1)

should be aggregated to the higher levels in the tree, and

the aggregate method is to add up the values of all

children nodes, then store the result in parent node in the

higher level. Following this method, info stored in the

nodes along the first branch is the same (sum = 2, cnt = 1).

4. Similarly, t2, t3, are insertedand form the other 3

branches, with the higher level node info updated. However,

as described above and shown in (Fig. 7) b), c), all the

nodes in every layer of H*-tree will be indexed following

the “binary tree” structure. For instance, when t2 is

inserted, it first retrieves the existed nodes in every layer

for the same labeled nodes from top to down. Since C21

differs from the existed C22 created before, it will create

another node in the first layer as the left child of C22,

with other nodes followed and form the second branch.

Similarly, as C24 is larger than C22, t3 creates a right child

node of C22.

5. The remaining tuples, t4 … t13, is inserted one by

one following the same steps, with the higher level node

info updated. Since t13 and t10 have the same attribute

values, they can share the single path, with node info in

the leaf (sum = 12, cnt = 2). As a limited of space, in

(Fig. 7) d), we only listthe aggregated info of five nodes,

H*-tree/H*-cubing: 데이터 스트림의 OLAP를 위한 향상된 데이터 큐브 구조 및 큐빙 기법 481

C22

A 12

B 12

C17

B21

L ayer 1 (C2)
S tore (*, *, C2)

Layer 2 (A1)
Store (A 1, *, C2)

Layer 3 (B2)
Store (A 1, B2, C2)

Layer 4 (C1)
Store (A 1, B2, C1)

Layer 5 (B1)
Store (A 1, B1, C1)

Sum
Cnt

2
1

Sum
Cnt

2
1

Sum
Cnt

2
1

C21
C22
C23
C24

C25

A11
A12
A13

B21
B22

B23

C11
C13
C16

C17
…
B12
B14

B15
B16
…

Hea der table

s ide link

Su m
C nt

2
1

Sum
Cnt

2
1

Root

(1) t1 is inserted into H*-tree

C22

A 12

B 12

C17

B21

C21

A11

B15

C11

B23

L ayer 1 (C2)
S tore (*, *, C2)

Layer 2 (A1)
Store (A 1, *, C2)

Layer 3 (B2)
Store (A 1, B2, C2)

Layer 4 (C1)
Store (A 1, B2, C1)

Layer 5 (B1)
Store (A 1, B1, C1)

Sum
Cnt

1
1

Sum
Cnt

2
1

Sum
Cnt

1
1

Sum
Cnt

2
1

Sum
Cnt

2
1

Su m
C nt

1
1

C21
C22
C23
C24

C25

A11
A12
A13

B21
B22

B23

C11
C13
C16

C17
…
B12
B14

B15
B16
…

Hea der table

side link

Sum
Cnt

1
1

Su m
C nt

2
1

Sum
Cnt

1
1

Sum
Cnt

2
1

Root

(2) t2 is inserted into H*-tree

C22

A 12

B 12

C17

B21

C21

A11

B15

C11

B23

C24

A 13

B14

C13

B22

L ayer 1 (C2)
S tore (*, *, C2)

Layer 2 (A1)
Store (A 1, *, C2)

Layer 3 (B2)
Store (A 1, B2, C2)

Layer 4 (C1)
Store (A 1, B2, C1)

Layer 5 (B1)
Store (A 1, B1, C1)

Sum
Cnt

1
1

Sum
Cnt

2
1

Sum
Cn t

3
1

Sum
Cnt

1
1

Sum
Cnt

2
1

Sum
Cn t

3
1

Sum
Cnt

3
1

Sum
Cnt

2
1

Su m
C nt

1
1

C21
C22
C23
C24

C25

A11
A12
A13

B21
B22

B23

C11
C13
C16

C17
…
B12
B14

B15
B16
…

Hea der table

side link

Sum
Cnt

3
1

Sum
Cnt

1
1

Su m
C nt

2
1

Sum
Cnt

1
1

Sum
Cnt

2
1

Sum
Cnt

3
1

Root

(3) t3 is inserted into H*-tree

C22

Root

A 12

B 12

C 17

B 21

C21

A11

B15

C11

B23

C24

A 13

B14

C13

B22

C23

A12

B 16

C 16

B23

A 13

B14

C15

B22

B13

C15

B22

B11

C15

B21

B 13

C 13

B23

B 14

C17

B15B13

B16

C11

Sum
Cnt

12
2

B15 i nfo

Sum
Cnt

28
4

C17 i nfo

Sum
Cnt

42
6

B23 in fo

Sum
Cnt

51
8

A 13 in fo

Sum
Cnt

55
10

C23 in fo

C21
C23

…

A11
A12

…

B21
B22

…

C11
C16

…

B11
B13

…

Hea der table
sid e link Layer 1 (C2)

Store (*, *, C2)

Layer 2 (A1)
Store (A 1, *, C2)

Layer 3 (B2)
Store (A 1, B2, C2)

Layer 4 (C1)
Store (A 1, B2, C1)

Layer 5 (B1)
Store (A 1, B1, C1)

(4) t13 is inserted into H*-tree

(Fig. 7) H*-tree construction steps. In (4), except for the 5 nodes in each layer, the computed info of other nodes are omitted

(Fig. 8) H*-tree construction algorithm

others are omitted. Predictably, the “binary tree” in every

layer of H*-treewill be of great worth for the efficiency

of construction and H*-cubing.

6. Finally, the tree so formed in (Fig. 7) d) is called an

H*-tree. Its construction requires only one scan of data

stream, and makes the nodes in the tree well

organized,which meets the feature of data stream and be

well adapted to stream OLAP.

Here, as a supplementary, we give the construction

algorithmof H*-tree in (Fig. 8)

3.3 Comparison: H*-tree Versus Previous Methods

Binary tree structure has been widely approved as a

solution for indexing records in large volume of datasets.

H*-tree is another tree involving this classicalstructure.

Meanwhile, there has been a lot of tree structures been

proposed. However, there are some essential differences.

Some detailed differences withprevious researches have

been given in [8], here we just compare with H-tree and

PAT in the following two aspects.

First, Compared with H-tree structure shown in Fig. 5,

482 정보처리학회논문지 D 제16-D권 제4호(2009.8)

the obvious difference between these two trees is the

layout. Meet the problem of H-tree, disorderly layout of

every layer, we index the tree structure in every layer

following “binary tree” method. Clearly, layers with the

binary tree indices will bewell adapted not only to the

retrieval of existed nodes in every layer when a new

tuple incomes, but also to the ad-hoc OLAP query

answering which sometimes need to select and aggregate

cells stored in different levels of H*-tree. Essentially, this

kind of structure makes H*-tree solve the potential

problem, disorderly layout of every layer, and makes the

tree structure well organized for stream OLAP.

Second, PAT, the same as H*-tree, can be regarded as

an extension of H-tree. It is indexed by infix links and

side links. Compared with PAT, H*-tree is more compact

and better organized by binary tree index. What’s more,

PAT focus more on the efficiency of answering ad-hoc

aggregate queries from data stream, but ignores the

essential of OLAP, multi-dimensional multi-conceptual

analysis.Consequently, it may need more improvements to

facilitate stream OLAP ad-hoc queries. However, the infix

link adopted in PAT is interesting, and it may lead a

new angle of view for the devising of tree.

4. Ad-hoc Query Answering

In this section, we will focus on the discussion about

how to answer ad-hoc OLAP queries utilizing H*-tree

maximally by proposing H*-cubing method.

4.1 H*-cubing Method

Mostly, an OLAP query can be considered involving a

set of instantiated dimensions, {Di, …, Dk}, and a set of

inquired dimensions, {Dl, …, Dp}. The query is then

abstracted to a set of relevant dimensions, Dr which is

the union of the sets ofinstantiated dimensions and the

inquired dimensions. In every layer of H*-tree and

H-tree, the existed nodes can be taken as the collectionof

partial-materialized stream cells, which form the cuboids

along popular-path. Defined in H-cubing, to find the

highest-level popular-path cuboids that contain Dr is to

maximally utilize the materialized popular-path. And for

any query, which corresponds to some cells in some

cuboids, if the pre-aggregated cuboids containing Dr can

be found, the result can be given by some “select”

operation directly. However, the solution in H-cubing for

computing Dr in occasion that it can not be found in the

pre-aggregated cuboids along popular-path, is to use the

base cuboid at the m-layer to compute. This does not

maximally utilize the pre-computed cells in the lower

level. From that point of view, H*-cubing will be a more

desirable approach as it will maximally utilize H*-tree by

retrieving the most approximate cuboids instead of using

the base cuboid directly.

4.2 Query answering using H*-cubing

As an extension of H-cubing, our task is to maximally

utilize the materialized H*-tree. For simplicity, we will

describe the query answering method, H*-cubing, based

on the H*-tree created shown in (Fig. 7) d).

First, consider query Q1: (A13, B23, C23), which itself is

an aggregated cell, stored in the node belonging to the 3rd

layer of the constructed H*-tree. Its aggregate value, 42

(sum), 6 (cnt), is registered in the aggregate table of

node C23A13B23. Following the path from the root to the

node, we can retrieve the answer quickly. The query

answering steps is as follows:

1. Q1 is abstracted to instantiated dimensions, {A1, B2,

C2} and no inquired dimensions. Then, Dr = {A1, B2, C2}.

2. Retrieve the cuboids along popular-path from top to

down, (*, *, C2) → (A1, *, C2) → (A1, B2, C2) → (A1, B2,

C1) → (A1, B1, C1), to see whether there is an cuboid

which covers Dr. Obviously, the third cuboid (A1, B2, C2)

stored in the 3rd layer of H*-tree is the objected cuboid.

3. Combined with Q1, we need to do the “select”

operation upon the so found cuboid to return the

aggregated cell in it.

Sometimes, in the third step, to return the final result,

side link sometimes should be used to aggregate the

same labeled nodes, stored in the same layer of H*-tree.

However, the method given above only considers the

cuboids being found condition. Next, we will give another

query answering method focus on the condition that the

objected cuboid can not be found.

Let us consider query Q2: (*, B23, C23), and the query

answering steps is as follows:

1. Q2 is abstracted to instantiated dimensions, {*, B2,

C2} and no inquired dimensions. Then, Dr = {*, B2, C2}.

2. Retrieve the cuboids along popular-path from top to

down, (*, *, C2) → (A1, *, C2) → (A1, B2, C2) → (A1, B2,

C1) → (A1, B1, C1), to see whether there is an cuboid

which covers Dr. Obviously, none cuboid includes the

three items, which means the cuboid contain the query

result is not an pre-aggregated one along popular-path.

In H-cubing, it is suggestedto use the base cuboid (A1,

H*-tree/H*-cubing: 데이터 스트림의 OLAP를 위한 향상된 데이터 큐브 구조 및 큐빙 기법 483

(Fig. 9) Query answering using H*-cubing

B1, C1) to compute (*, B23, C23) immediately. Nevertheless,

H*-cubing will first select the most approximate pre-

aggregated one from top to down along popular-path.

Here, the first most approximate one is (*, *, C2),

however, as * is higher than B2 in the concept hierarchy,

we can not aggregate from higher levels to lower ones.

Then, the next approximate one is (A1, B2, C2), and A1 is

lower than *, which means it is right the most

approximate cuboid we need.

3. Combined with Q2, we need to do some aggregate

operations to return (*, B23, C23). Based on the found

cuboid, (A1, B2, C2), aggregate all the cells contain B23

and C23 upon first dimension. Then, we can return the

value of (*, B23, C23).

Summarized from the query answering steps of Q1 and

Q2, H*-cubing algorithm can be given in (Fig. 9).

4.3 Comparison: H*-cubing Versus H-cubing

Compared with H-cubing, we more maximally utilized

the constructed H*-tree. Essentially, considering the

condition that the cuboids involving Dr can not be found

along popular-path, instead of computing using the base

cuboid directly in H-cubing, H*-cubing first recursively

retrieve the most approximate cuboids in H*-tree. These

sofound cuboids have been aggregated and stored in

H*-tree when it is constructed. Regarding computation,

aggregation based on m-layergiven by H-tree will lead to

more computation, and it may not utilize the intermediate

approximate cuboid as effectively as H*-cubing. As a

proof, a performance study is needed to show the efficiency

of H*-cubing.

5. Performance Evaluation

In this section, to evaluate the efficiency of H*-tree

and H*-cubing, we performed an extensive performance

analysis on real datasets. All experiments were conduced

on a 2.6 GHz Pentium 4 PC with 2.0GB main memory,

running Microsoft-XP Professional. All methods are

implemented using Microsoft Visual C++ 6.0. We

compared the performance of H*-tree with H-tree,

H*-cubing with H-cubing. Since the original H-tree and

H-cubing code is unavailable, we implement it as

efficiently as possible.

We have examined the following factors in our

performance study. For the construction efficiency of

H-tree and H*-tree, (1) time and space with respect to

the data size; (2) time and space with respect to the

popular-pathlength (the number of cuboids along popular-

path). For the evaluation of ad-hocquery answering

efficiency, time and sp ace with respect to the data size

is considered.

5.1 About the Datasets

Here we report our performance study with real

datasets. This real datasets is about traffic information

such as flow, speed, and density, which is obtained from

actual detailed vehicle trajectories collected by Cambridge

Systematics,Inc., under the auspices of the Next

Generation SIMulation (NGSIM) program [13]. The NGSIM

program has collected data sets of vehicle trajectories

from actual live traffic video footages. To the best of our

knowledge, traffic field data with such a level of detail

were previously unavailable. Attributes extracted from the

original datasets in this paper are under the schema

flow(Global Time, Vehicle Class, Lane Identification,

Local X, Local Y, Vehicle Velocity, Vehicle Acceleration),

where Global Time is the time-stamp, Vehicle Class,

Lane Identification, Local X and Local Y are the

dimensions, Vehicle Velocity and Vehicle Acceleration are

the measures. You may find more detailed description

about it in [13].

5.2 Experiment 1: Construction of Trees

(Fig. 10) shows the processing time and memory usage

for the construction of H-tree and H*-tree, with increasing

size of the datasets, where the size is measured as the

number of tuples at m-layer for the datasets, the popular

-path length (the number of cuboids along popular-path)

is 9, which means the height of the trees is 9. Since the

layout of H*-tree is indexed by “binary tree”, the

484 정보처리학회논문지 D 제16-D권 제4호(2009.8)

(1) Time vs. length

(2) Space vs. length

(Fig. 11) Cube computation: time and memory usage vs.

popular-path length

(1) Time vs. size

(2) Space vs. size

(Fig. 10) Cube computation: time and memory usage vs. no.

tuples at m-layer

response time is shorter than H-tree shown in (1). With

the growing of data size, the trend will be more obvious.

However, shown in (2), as the construction of H*-tree is

more complex than H-tree, the memory usage isa little

higher.

(Fig. 11) shows the processing time and memory usage

for the construction of H-tree and H*-tree, with

increasing length of popular-path, which means the height

of the trees. As been discussed before, the length is

measured as the number of cuboids along popular-path.

Meanwhile, the size of datasets imcoming m-layer is

200K tuples. Since the regularly layout of H*-tree, the

response time is shorter than H-tree, shown in (1). On

the contrary, the memory usage of H*-tree is higher

shown in (2), but stable. Also, there is a “jump” from 6

to 7 in (2). The reason is that the number of tuple

dimensions is 3 (ignoring “Local X”) when the length is

under 6, and the number of tuple dimensions is 4 when

the length is above 7.From the “jump”, we can also

conclude that the change of tuple dimensions number has

a considerable impact on the performance.

Anyway, considering the features of OLAP on data

stream, a more desirable trade-off between response time

and memory space should be considered. And this

experiment proves that H*-tree is a more ideal option.

5.3 Experiment 2: Ad-hoc Query Answering

(Fig. 12) shows the processing time and memory usage

for query answering using H-cubing and H*-cubing, with

increasing size of the datasets, where the size is also

measured as the number of tuples at m-layer for the

datasets, the popular-path length (the number of cuboids

along popular-path) is 9. Obviously, due to the “binary

tree” index of H*-tree and the less computation by

utilizing the most approximate cuboids, H*-cubing

outperforms H-cubing with respect to both response time

and memory usage. Moreover, with the growing of data

size, the advantage of H*-cubing will be more obvious.

H*-tree/H*-cubing: 데이터 스트림의 OLAP를 위한 향상된 데이터 큐브 구조 및 큐빙 기법 485

(1) Time vs. size

(2) Space vs. size

(Fig. 12) Query answering: time and memory usage vs. no.

tuples at m-layer

6. Conclusion

On-line analytical processing (OLAP) on data stream is

an interesting and challenging research topic. In this

paper, we have done some research on the fundamental

data structure and algorithms of this target, and succeed

in optimizing stream cube, based on which more complex

OLAP applications can be implemented efficiently. As a

proof, we present a performance study withreal traffic

datasets to examine the effectiveness and the efficiency

of our optimization.

7. Acknowledgement

This research was supported by a grant (07KLSGC05)

from Cutting-edge Urban Development - Korean Land

Spatialization Research Project funded by Ministry of

Construction & Transportation of Korean government.

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom,

“Models and Issues in Data Stream Systems,” Proc. ACM

Symposium on Principles of Database Systems (PODS),

Madison, Wisconsin, USA, pp.1-16, 2002.

[2] E.F. Codd et al., “Providing OLAP (On-line Analytical

Processing) to User-Analysts: An IT Mandate,” Available:

http://www.arborsoft.com

[3] J. Han, Y. Chen, G. Dong, J. Pei, B.W. Wah, J. Wang and

D. Cai, “Stream Cube: An Architecture for Multi-Dimensional

Analysis of Data Streams,” Distributed and Parallel Databases

Journal, Vol.18, No.2, pp.173-197, 2005.

[4] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,

M. Venkatrao, F. Pellow and H. Pirahesh, “Data Cube: A

Relational Aggregation Operator Generalizing Group-By,

Cross-Tab and Sub-Totals,” Data Mining and Knowledge

Discovery Journal, Vol.1, No.1, pp.29-53, 1997.

[5] Y. Chen, G. Dong, J. Han, J. Pei, B. W. Wahand J. Wang,

“Online Analytical Processing Data stream: Is It Feasible?”

ACM SIGMOD InternationalWorkshop on Research Issues

on Data Mining and Knowledge Discovery (DMKD),

Madison, Wisconsin, USA, 2002.

[6] J. Han, J. Pei, G. Dong and K. Wang, “Efficient computation

of iceberg cubes with complex measures,” Proc. ACM

SIGMOD International Conference on Management of Data,

Santa Barbara, California, USA, pp.1-12, 2001.

[7] Y. Chen, G. Dong, J. Han, B. W. Wah and J. Wang,

“Multi-Dimensional Regression Analysis of Time-Series

Data Streams,” Proc. ACM VLDB International Conference

on Very Large Data Bases, Hong Kong, China, pp.323-334,

2002.

[8] M. Cho, J. Pei, and K. Wang, “Answering Ad-hoc Aggregate

Queries from Data Streams Using Prefix Aggregate Trees,”

Knowledge and Information Systems Journal, Vol.12, No.3,

pp.301-329, 2007.

[9] H. Gonzalez, J. Han and X. Li, “FlowCube: Constructing

RFID FlowCubes for Multi-Dimensional Analysis of

Commodity Flows,” Proc. ACM VLDB International

Conference on Very Large Data Bases, Seoul, Korea,

pp.834-845, 2006.

[10] H. Gonzalez, J. Han, X. Li and D. Klabjan, “Warehousing and

Analysis of Massive RFID Data Sets,” Proc. IEEE ICDE

International Conference onData Engineering, Atlanta,

Georgia, USA, pp.83 ,2006.

[11] E. Lo, B. Kao, S. Lee, W. Ho, C. Chui and D. Cheung, “OLAP

on Sequence Data,” Proc. ACM SIGMOD International

Conference on Management of Data, Vancouver, Canada,

pp.649-660, 2008.

[12] Y. Cai, D. Clutter, G. Pape, J. Han, M. Welge and L. Auvil,

“MAIDS: Mining Alarming Incidents from Data Streams,”

Proc. ACM SIGMOD International Conference on Management

486 정보처리학회논문지 D 제16-D권 제4호(2009.8)

of Data, Paris, France, pp.919-920, 2004.

[13] Cambridge Systematics Inc., “NGSIM (Next Generation

SIMulation),” Oakland, California, USA, June, 2005. Available:

http://ngsim.camsys.com/.

심 상 예

e-mail : airchenDB@gmail.com

2008년 중국 중경우전대학교 컴퓨터과학

기술학과(공학사)

2008년～현 재 인하대학교 정보공학과

석사과정

관심분야 :데이터 스트림, OLAP 연산,

 유비쿼터스GIS, cloud컴퓨팅

이 연

e-mail : leeyeon@dblab.inha.ac.kr

2006년 중국 중경우전대학교 지리정보

시스템학과(이학사)

2008년 인하대학교 컴퓨터정보공학과

(공학석사)

2008년～현 재 인하대학교 정보공학과

 박사과정

관심분야 :공간 데이터베이스, 공간 데이터웨어하우스, 지리정보

시스템, USN, 스트림 데이터 시스템

이 동 욱

e-mail : dwlee@dblab.inha.ac.kr

2003년 상지대학교 전자계산공학과(이학사)

2005년 인하대학교 컴퓨터정보공학과

(공학석사)

2005년～현 재 인하대학교 정보공학과

박사과정

관심분야 :유비쿼터스 환경을 위한 공간 DBMS 및 DSMS, 공간

Data Warehouse

김 경 배

e-mail : gbkim@seowon.ac.kr

1992년 인하대학교 전자계산공학과(공학사)

1994년 인하대학교 전자계산공학과(공학석사)

2000년 인하대학교 전자계산공학과(공학박사)

2000년～2004년 한국전자통신 선임연구원

2004년～현 재 서원대학교 컴퓨터교육과

조교수

관심분야 :이동실시간 데이터베이스, 스토리지 시스템, GIS, VOD

배 해 영

e-mail : hybae@inha.ac.kr

1974년 인하대학교 응용물리학과(공학사)

1978년 연세대학교 전자계산학과(공학석사)

1989년 숭실대학교 전자계산학과(공학박사)

2004년～2006년 인하대학교 정보통신대학원

원장

2006년～2009년 인하대학교 대학원 원장

1982년～현 재 인하대학교 컴퓨터공학부 교수

관심분야 :분산 데이터베이스, 공간 데이터베이스, 지리정보

시스템, 멀티미디어 데이터베이스 등

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

