• 제목/요약/키워드: tree data structure

검색결과 600건 처리시간 0.036초

LiDAR 데이터를 이용한 산림구조 분석 - 오산시 남촌동의 산림을 대상으로 - (Analysis of Forest Structure Using LiDAR Data - A Case Study of Forest in Namchon-Dong, Osan -)

  • 이동근;류지은;김은영;전성우
    • 환경영향평가
    • /
    • 제17권5호
    • /
    • pp.279-288
    • /
    • 2008
  • Vertical forest distribution is one of the important factors to understand various ecological mechanism such as succession, disturbance and environmental effects. LiDAR data provide information, both the horizontal and vertical distribution of forest structure. The laser scanner survey provided a point cloud, in which the x, y, and z coordinates of the points are known. The objectives of this study were 1) to analyze factors of forest structure such as individual tree isolation, tree height, canopy closure and tree density using LiDAR data and 2) to compare the forest structure between outer and interior forest. The paper conducted to extract the individual tree using watershed algorithm and to interpolate using the first return of LiDAR data for yielding digital surface model (DSM). The results of the study show characters of edge such as more isolated individual trees, higher density, lower canopy closure, and lower tree height than those of interior forest. LiDAR data is to be useful for analyzing of forest structure. Further study should be undertaken with species for more accurate results.

SQMR-tree: 대용량 공간 데이타를 위한 효율적인 하이브리드 인덱스 구조 (SQMR-tree: An Efficient Hybrid Index Structure for Large Spatial Data)

  • 신인수;김정준;강홍구;한기준
    • Spatial Information Research
    • /
    • 제19권4호
    • /
    • pp.45-54
    • /
    • 2011
  • 본 논문에서는 기존에 제시된 MR-tree와 SQR-tree의 장점을 결합하여 대용량 공간 데이타를 보다 효율적으로 처리할 수 있는 하이브리드 인덱스 구조인 SQMR-tree(Spatial Quad MR-tree)를 제시한다. MR-tree는 R-tree에 R-tree 리프 노드를 직접 접근해주는 매핑 트리를 적용한 인덱스 구조이고, SQR-tree는 SQ-tree (Spatial Quad-tree)와 SQ-tree의 리프 노드마다 실제로 공간 객체를 저장하는 R-tree가 결합된 인덱스 구조이다. SQMR-tree는 SQR-tree를 기본 구조로 SQR-Tree의 R-tree 마다 매핑 트리가 적용된 형태를 가진다. 따라서, SQMR-tree는 SQR-tree와 같이 공간 객체가 여러 R-tree에 분산 저장되며 질의 영역에 해당하는 R-tree만 접근하면 되기 때문에 공간 질의 처리 비용을 줄일 수 있다. 또한, SQMR-tree는 MR-tree와 같이 매핑 트리를 통해 트리 검색 없이 R-tree 리프 노드의 빠른 접근이 가능하기 때문에 검색 성능을 향상시킬 수 있다. 마지막으로 실험을 통해 SQMR-tree의 우수성을 입증하였다.

VA-Tree : 대용량 데이터를 위한 효율적인 다차원 색인구조 (VA-Tree : An Efficient Multi-Dimensional Index Structure for Large Data Set)

  • 송석일;이석희;조기형;유재수
    • 한국멀티미디어학회논문지
    • /
    • 제6권5호
    • /
    • pp.753-768
    • /
    • 2003
  • 이 논문은 다차원의 특징벡터를 벡터 근사치로 표현한 후 색인 트리를 구성하여 검객의 효율을 높이는 VA(Vector Approximate)-트리를 제안한다. 이 논문에서 제안하는 VA-트리는 전체적인 색인구조의 저장 공간을 줄이기 위해서 VA-화일의 벡터 근사치 개념을 이용하여 데이터양이 증가해도 검색 성능이 저하되지 않도록 하는 트리 형태의 구조를 갖는다. VA-트리는 MBR 기반의 색인구조이지만 MBR간에 겹침이 발생하지 않는 분할 방법을 사용하여 검색 효율을 높인다. 제안하는 색인구조와 기존의 여러 다차원 색인구조와의 성능 평가를 통해 제안하는 방법의 우수함을 보인다.

  • PDF

aCN-RB-tree: Constrained Network-Based Index for Spatio-Temporal Aggregation of Moving Object Trajectory

  • Lee, Dong-Wook;Baek, Sung-Ha;Bae, Hae-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권5호
    • /
    • pp.527-547
    • /
    • 2009
  • Moving object management is widely used in traffic, logistic and data mining applications in ubiquitous environments. It is required to analyze spatio-temporal data and trajectories for moving object management. In this paper, we proposed a novel index structure for spatio-temporal aggregation of trajectory in a constrained network, named aCN-RB-tree. It manages aggregation values of trajectories using a constraint network-based index and it also supports direction of trajectory. An aCN-RB-tree consists of an aR-tree in its center and an extended B-tree. In this structure, an aR-tree is similar to a Min/Max R-tree, which stores the child nodes' max aggregation value in the parent node. Also, the proposed index structure is based on a constrained network structure such as a FNR-tree, so that it can decrease the dead space of index nodes. Each leaf node of an aR-tree has an extended B-tree which can store timestamp-based aggregation values. As it considers the direction of trajectory, the extended B-tree has a structure with direction. So this kind of aCN-RB-tree index can support efficient search for trajectory and traffic zone. The aCN-RB-tree can find a moving object trajectory in a given time interval efficiently. It can support traffic management systems and mining systems in ubiquitous environments.

KDBcs-트리 : 캐시를 고려한 효율적인 KDB-트리 (KDBcs-Tree : An Efficient Cache Conscious KDB-Tree for Multidimentional Data)

  • 여명호;민영수;유재수
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권4호
    • /
    • pp.328-342
    • /
    • 2007
  • 본 논문에서는 데이타의 갱신이 빈번한 상황에서 데이타의 갱신을 효율적으로 처리하기 위한 색인 기법을 제안한다. 제안하는 색인구조는 대표적인 공간 분할 색인 기법 중 하나인 KDB-트리를 기반으로 하고 있으며, 캐시의 활용도를 높이기 위한 데이타 압축 기법과 포인터 제거 기법을 제안한다. 제안하는 기법의 우수성을 보이기 위해서 기존의 대표적인 캐시를 고려한 색인 구조중 하나인 CR-트리와 실험을 통해 성능을 비교하였으며, 성능평가 결과, 제안하는 색인 구조는 삽입 성능과 갱신 성능, 캐시 활용도 면에서 기존 색인 기법에 비해 각각 85%, 97%, 86% 의 성능이 향상되었다.

SQR-Tree : 효율적인 공간 질의 처리를 위한 하이브리드 인덱스 구조 (SQR-Tree : A Hybrid Index Structure for Efficient Spatial Query Processing)

  • 강홍구;신인수;김정준;한기준
    • Spatial Information Research
    • /
    • 제19권2호
    • /
    • pp.47-56
    • /
    • 2011
  • 대표적인 트리 기반 공간 인덱스 구조는 크게 R-Tree와 같은 데이타 분할 기반 인덱스 구조와 KD-Tree와 같은 공간 분할 기반 인덱스 구조로 구분되며, 최근에는 이들의 장점을 결합한 하이브리드 인덱스 구조에 대한 연구가 활발히 진행되고 있다. 그러나, 기존 연구에서는 공간 객체가 삽입되는 노드의 분할 경계 확장이 다른 이웃 노드에 연쇄적으로 전파되어 노드간 겹침이 증가하고 질의 처리 비용이 높아지는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 효율적인 질의 처리를 위한 하이브리드 인덱스 구조인 SQR-Tree를 제시한다. SQR-Tree는 크기를 갖는 공간 객체 처리에 적합하도록 Quad-Tree를 확장한 SQ-Tree(Spatial Quad-Tree)와 SQ-Tree의 리프 노드마다 연계되어 실제로 공간 객체를 저장하는 R-Tree가 결합된 인덱스 구조이다. SQR-Tree는 노드마다 하위 노드를 포함하는 MBR을 가지고 있기 때문에 노드의 분할 경계 확장이 독립적으로 이루어지도록 하여 노드간 겹침을 줄였다. 그리고 SQR-Tree에서 공간 객체는 분할된 데이타 공간마다 존재하는 여러 R-Tree에 분산 저장되며 SQ-Tree가 분할된 데이타 공간을 식별하는 기능을 수행한다. 따라서 공간 질의 처리시 질의 영역에 해당하는 R-Tree만 접근하면 되기 때문에 질의 처리 비용을 줄일 수 있다. 마지막으로 실험을 통해 SQR-Tree의 우수성을 입증하였다.

대용량 데이터를 위한 효율적인 다차원 색인구조 (An Efficient Multi-Dimensional Index Structure for Large Data Set)

  • 이병엽;유재수
    • 한국지리정보학회지
    • /
    • 제5권2호
    • /
    • pp.54-68
    • /
    • 2002
  • 최근 지리정보시스템, 움직임 객체관리시스템, 동영상/이미지 내용기반 검색시스템, 시계열 데이터베이스시스템과 같이 다차원 데이터를 이용하는 응용에 대한 관심이 고조되고 있다. 이 논문은 다차원의 특징벡터를 벡터 근사치로 표현한 후 색인 트리를 구성하여 검색의 효율을 높이는 VA(vector approximate)-트리를 제안한다. 이 논문에서 제안하는 VA-트리는 전체적인 색인구조의 저장공간을 줄이기 위해서 VA-파일의 벡터 근사치 개념을 이용하여 데이터량이 증가해도 검색 성능이 저하되지 않도록 하는 트리 형태의 구조를 갖는다. VA-트리는 MBR 기반의 색인구조이지만 MBR 간에 겹침이 발생하지 않는 분할방법을 사용하여 검색 효율을 높인다. 제안하는 색인구조와 기존의 여러 다차원 색인구조와의 성능 평가를 통해 제안하는 방법의 우수함을 보인다.

  • PDF

외부 메모리에서 문자열을 효율적으로 탐색하기 위한 인덱스 자료 구조 (An Index Data Structure for String Search in External Memory)

  • 나중채;박근수
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제32권11_12호
    • /
    • pp.598-607
    • /
    • 2005
  • 본 논문에서는 새로운 외부 메모리 인덱스 자료 구조인 접미사 B-tree를 제안한다. 접미사 B-tree는 String B-tree와 마찬가지로 문자열을 키로 가지는 B-tree이다. String B-tree의 노드는 복잡한 Patricia ie로 구현된 반면, 접미사 B-tree의 노드는 일반적인 B-tree처럼 배열로 구현되어 보다 간단하고 구현하기 쉽다. 그럼에도 불구하고 접미사 B-tree에서 배열을 이용하여 String B-tree만큼 효율적으로 분기를 찾을 수 있다. 결과적으로 문자열 알고리즘 분야에서 기본적이고 중요한 문제인 문자열 매칭을 String B-tree와 동일한 디스크 접근을 사용하여 수행할 수 있다.

키밸류 저장소 성능 제어를 위한 삭제 키 분리 LSM-Tree (A Tombstone Filtered LSM-Tree for Stable Performance of KVS)

  • 이은지
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.17-22
    • /
    • 2022
  • 최근 웹 서비스의 확산과 함께 데이터의 형태는 더욱 다양해지고 있다. 이미지, 동영상, 텍스트 등 데이터를 저장하는 형태 뿐 아니라 해당 데이터를 표현하는 속성 및 메타데이터 등도 개수 및 형태가 데이터 별로 상이하다. 이러한 비정형 데이터를 효율적으로 처리하기 위해 키밸류 스토어(Key-Value Store)의 사용이 확산되고 있다. LSM-Tree(Log Structured Merge Tree)는 다양한 상용 키밸류 스토어의 핵심 자료구조이다. LSM-Tree 는 모든 쓰기 및 삭제 연산을 로그 방식으로 기록함으로써 소량의 쓰기에 높은 성능을 제공하도록 최적화 되어 있다. 그러나 최근 유효성 만료 데이터의 대용량 삭제 연산이 LSM-Tree에 특수 키밸류 데이터로 삽입됨에 따라 사용자 요청의 지연시간 및 처리속도가 저하된다는 문제점이 있다. 본 논문은 기존 LSM-Tree의 장점을 모두 유지하면서도 삭제된 키를 주요 트리 구조에서 분리하여 상기 문제를 해결하는 Filtered LSM-Tree (FLSM-Tree)를 제안한다. 제안하는 기법은 상용 키밸류 저장소인 LevelDB에 구현되었으며 성능 평가에서 읽기 성능이 최대 47% 향상됨을 보인다.

A File/Directory Reconstruction Method of APFS Filesystem for Digital Forensics

  • Cho, Gyu-Sang;Lim, Sooyeon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권3호
    • /
    • pp.8-16
    • /
    • 2022
  • In this paper, we propose a method of reconstructing the file system to obtain digital forensics information from the APFS file system when meta information that can know the structure of the file system is deleted due to partial damage to the disk. This method is to reconstruct the tree structure of the file system by only retrieving the B-tree node where file/directory information is stored. This method is not a method of constructing nodes based on structural information such as Container Superblock (NXSB) and Volume Checkpoint Superblock (APSB), and B-tree root and leaf node information. The entire disk cluster is traversed to find scattered B-tree leaf nodes and to gather all the information in the file system to build information. It is a method of reconstructing a tree structure of a file/directory based on refined essential data by removing duplicate data. We demonstrate that the proposed method is valid through the results of applying the proposed method by generating numbers of user files and directories.