• Title/Summary/Keyword: tree biomass equation

Search Result 34, Processing Time 0.019 seconds

Estimation Model and Vertical Distribution of Leaf Biomass in Pinus sylvestris var. mongolica Plantations

  • Liu, Zhaogang;Jin, Guangze;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.576-583
    • /
    • 2009
  • Based on the stem analysis and biomass measurement of 36 trees and 1,576 branches in Pinus sylvestris var. mongolica (Mongolian pine) plantations of Northeast China, this study was conducted to develop estimation model equation for leaf biomass of a single tree and branch, to examine the vertical distribution of leaf biomass in the crown, and to evaluate the proportional ratios of biomass by tree parts, stem, branch, and leaf. The results indicated that DBH and crown length were quite appropriate to estimate leaf biomass. The biomass of single branch was highly correlated with branch collar diameter and relative height of branch in the crown, but not much with stand density, site quality, and tree height. Weibull distribution function would have been appropriate to express vertical distribution of leaf biomass. The shape parameters from 29 sample trees out of 36 were less than 3.6, indicating that vertical distribution of leaf biomass in the crown was displayed by bell-shaped curve, a little inclined toward positive side. Apparent correlationship was obtained between leaf biomass and branch biomass having resulted in linear function equation. The stem biomass occupied around 80% and branch and leaf made up about 20% of total biomass in a single tree. As the level of tree class was increased from class I to class V, the proportion of the stem biomass to total biomass was gradually increased, but that of branch and leaf became decreased.

Allometry, Biomass and Productivity of Quercus Forests in Korea: A Literature-based Review

  • Li, Xiaodong;Yi, Myong-Jong;Son, Yo-Whan;Jin, Guangze;Lee, Kyeong-Hak;Son, Yeong-Mo;Kim, Rae-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.726-735
    • /
    • 2010
  • Publications with the data on allometric equation, biomass and productivity of major oak forests in Korea were reviewed. Different allometric equations of major oak species showed site- or speciesspecific dependences. The biomass of major oak forests varied with age, dominant species, and location. Aboveground tree biomass over the different oak species was expressed as a power equation of the stand age. The proportion of tree component (stem, branch and leaf) to total aboveground biomass differed among oak species, however, biomass ranked stem > branch > leaf in general. The leaf biomass allocation over the different oak species was expressed as a power equation of total aboveground biomass while there were no significant patterns of biomass allocation from stem and branch to the aboveground biomass. Tree root biomass continuously increased with the aboveground biomass for the major oak forests. The relationship between the root to shoot ratio and the aboveground tree biomass was expressed by a logarithmic equation for major oak forests in Korea. Thirteen sets of data were used for estimating the net primary production (NPP) and net ecosystem production (NEP) of oak forests. The mean NPP and NEP across different oak forests was 10.2 and 1.9 Mg C $ha^{-1}year^{-1}$. The results in biomass allocation, NPP and NEP generally make Korean oak forests an important carbon sinks.

Carbon Sequestration of Teak (Tectona grandis Linn. f.) Plantations in the Bago Yoma Region of Myanmar

  • Oo, Thaung Naing;Lee, Don Koo;Combalicer, Marilyn
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.602-608
    • /
    • 2007
  • Forest plantations become important strategy not merely for the financial aspect, but for carbon sequestration and ecosystem stability. Forest plantations increase the density of the forest biomass, which reduce the increase in atmospheric carbon dioxide. Biomass density is also a useful variable for comparing structural and functional attributes of forest ecosystems across a wide range of environmental conditions. In this study, carbon sequestration of teak (Tectona grandis Linn. f.) in the individual tree and plantation levels estimation was carried out Site-specific allometric equation for the estimation of teak tree biomass was developed based on the direct measurement of fifteen (15) harvested trees in the Oak-twin Township of the Bago Yoma Region, Myanmar. A regression equation of the diameter at breast height (DBH) and the aboveground biomass (carbon content) was constructed to estimate the carbon storage level of plantations, which averaged 79 ton/ha. The average carbon accumulation in the soil (up to 30 cm in depth) was estimated 38.89 ton/ha, The highest mean annual increment (MAI) of total carbon was found in the 6-yr-old teak plantation (12.10 ton/ha/yr) whereas the lowest MAI was in the 26-yr-old teak plantation (4.31 ton/ha/yr).

Above- and Below-ground Biomass and Energy Content of Quercus mongolica (신갈나무의 지상부와 지하부 바이오매스 및 에너지량)

  • Kwon, Ki-Cheol;Lee, Don-Koo
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Quercus mongolica is the most common hardwood species distributed in Korea. This study was conducted to investigate the biomass and energy content of the belowground biomass of Q. mongolica and to obtain the regression equation for estimating root biomass using the tree height and diameter at breast height (DBH). A total of 18 sample trees ranging 20 to 60 year-old were selected in the study sites. Tree height, DBH, age, and weight of stemwood, sapwood, heartwood, stembark, branch, leaf, and root were measured for total biomass. The highly positive correlation was shown between the biomass of most of variables of aboveground components and root biomass. The regression equation of the aboveground total biomass was $log\;W_A\;=\;1.469\;+\;0.992\;log\;D^2H\;(R^2 =0.99)$. The regression equation of the belowground biomass was $log\;W_R\;=\;1.527\;+\;0.808\;log\;D^2H\;(R^2\;=\;0.97)$. The mean energy contents of sapwood, heartwood, bark, leaf, and root were 19,594 J/g DW, 19,571 J/g DW, 19,999 J/g DW, 20,664 J/g DW, and 19,273 J/g DW, respectively. The results obtained from this study can be used to estimate biomass and energy content of belowground using easily measurable variables such as DBH and tree height ranging from 20 to 60-year-old Q. mongolica stands.

  • PDF

갈참나무 수엽의 사료가치 및 생엽량 추정에 관한 연구 ( Nutritive Value and Biomass Estimation of Oriental White Oak ( Quercus aliena Blume ) Browse )

  • 김득수;이인덕
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.14 no.2
    • /
    • pp.120-124
    • /
    • 1994
  • Browse from oriental white oak(Quercus aliena Blume) was analysed for nutritive value and biomass estimation. The content of cmde protein was high on August and September. NDF, ADF and lignin contents were increased with progressing the seasons but IVDMD, TDN, DE and ME levels were not different from the variation of seasons. Tannin content was high on May and June. Basal stem diameter $\times$ height of tress was highly correlated with browse dry weights(r=0.80**) and the linear regression equation are the follows; Y = 8.23 + O.57X(Y = browse dry weight(g), X= basal stem diameter $\times$ height(cm)). Using the traditional cutting method, the amounts of browse was determined as 823 g dry weight per tree, while the new method by the above equation gave a similar results, i. e., 793 g dry weight per tree. The possibility of browse biomass estimation of oriental white oak by the basal stem diameter $\times$ height index was found.

  • PDF

Relationship Between Above-and Below-Ground Biomass for Norway Spruce (Picea abies) : Estimating Root System Biomass from Breast Height Diameter (독일가문비나무(Picea abies [L.] Karst)의 지상부(地上部)와 지하부(地下部) 생체량(生體量)에 관(關)한 연구(硏究) : 흉고직경(胸高直徑)에 의한 뿌리생체량(生體量) 추정(推定))

  • Lee, Do-Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.3
    • /
    • pp.338-345
    • /
    • 2001
  • This study was conducted to elucidate the relationship between the root structure and the crown structure of Norway spruce(Picea abies [L.] Karst), and thereafter to obtain the regression equation for the estimation of relative root and needle biomass using the tree height and diameter at breast height(DBH) without measurement of root and needle biomass. The study site was Barbis stands of Harz region located in central part of Germany. Five dominant and three co-dominant trees of 30 to 40 year-old Norway spruce were selected and tree height, diameter at breast height, clear bole length, weight of total needle and branch, cross section and sapwood area at breast height for biomass of above ground part and also the length of root, the number of root, the weight of root, the cross section area of root etc. by dividing the horizontal and vertical roots for below ground part of tree were measured. The significantly correlation was shown between the biomass of most of variables of above ground parts and those of below ground parts. For the diameter of breast height to the weight of total root, regression equation was Y = 3.56X - 45.94 and decision coefficient was 0.96 showing highly correlation. The weight of total branches and needles, and the tree height etc. of above ground parts showed highly positive relationship with below ground biomass. The results obtained from this study can be used to the estimating of biomass of below ground using variables of above ground such as DBH in the 30 to 40 year-old Norway spruce stands.

  • PDF

Development of Biomass Allometric Equations for Pinus densiflora in Central Region and Quercus variabilis (중부지방소나무 및 굴참나무의 바이오매스 상대생장식 개발)

  • Son, Yeong-Mo;Lee, Kyeong-Hak;Pyo, Jung-Kee
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.65-72
    • /
    • 2011
  • The objective of this research is to develop biomass allometric equation for Pinus densiflora in central region and Quercus variabilis. To develop the biomass allometric equation by species and tree component, data for Pinus densiflora in central region is collected to 30 plots (70 trees) and for Quercus variabilis is collected to 15 plots (32 trees). This study is used two independent values; (1) one based on diameter beast height, (2) the other, diameter beast height and height. And the equation forms were divided into exponential, logarithmic, and quadratic functions. The validation of biomass allometric equations were fitness index, standard error of estimate, and bias. From these methods, the most appropriate equations in estimating total tree biomass for each species are as follows: $W=aD^b$, $W=aD^bH^c$; fitness index were 0.937, 0.943 for Pinus densiflora in central region stands, and $W=a+bD+cD^2$, $W=aD^bH^c$; fitness index were 0.865, 0.874 for Quercus variabilis stands. in addition, the best performance of biomass allometric equation for Pinus densiflora in central region is $W=aD^b$, and Quercus variabilis is $W=a+bD+cD^2$. The results of this study could be useful to overcome the disadvantage of existing the biomass allometric equation and calculate reliable carbon stocks for Pinus densiflora in central region and Quercus variabilis in Korea.

Growth and Fruiting Characteristics and No. of Acorns/tree Allometric Equations of Quercus acuta Thunb. in Wando Island, Korea (완도지역 붉가시나무의 성장 및 결실 특성과 종실량 상대성장식)

  • Kim, Sodam;Park, In-Hyeop
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.440-446
    • /
    • 2019
  • This study examined the growth and fruiting characteristics and the acorns biomass allometric equation of Quercus acuta to provide reference data related to the growth and seed supply during the restoration of evergreen forest in the warm temperate zone in Wando Island, Korea. For the growth survey, we selected and cut three sample trees having a mean diameter at breast height (DBH) to investigate the growth analysis through a stem analysis. We then developed the allometric equation (Y=aX+b) of DBH and tree height growth characteristic (Y) according to the average tree age (X) of sampled trees and estimated the DBH and tree height according to the age of Quercus acuta. For the fruiting survey, we selected and cut three sample trees with full fruit in August when, they are at the early mature fruiting stage, for the analysis. To develop the acorns/tree biomass allometric equation of Quercus acuta, we selected and cut ten sample trees of evenly divided diameters. The acorns biomass allometric equation ($Y=aX^b$) was derived by analyzing the biomass (Y) and the growth characteristics (X), such as the DBH, tree height, crown width, and crown height. The allometric equations of average tree age according to DBH and tree height were Y=0506X-2.064 ($R^2=0.999$) and Y=0.321X+0689 ($R^2=0.992$), respectively. The developed allometric equations estimated that the DBH were 3.0cm, 8.1cm, 13.1cm and 18.2cm while the tree heights were 3.9m, 7.1m, 10.3m, and 13.5m when the tree ages were 10, 20, 30, and 40 years, respectively. The analysis results of fruiting characteristics showed that the length, the diameter, the number of fruits, and the number of acorns per fruiting branch had the statistically significant difference and tended to decrease from the upper part to the lower part of crown downward. The total number of acorns was 1,312 acorns/tree in the upper part, 115 acorns/tree in the middle part, and 5 acorns/tree in the lower part of the crown. The allometric equation for the amount of acorns with DBH as an independent variable was $Y=0.003X^{4.260}$ with the coefficient of determination at 0.896. Although the coefficient of determination of the allometric equation using only DBH as the independent variable was lower than that using DBH and tree height ($D^2H$), it would be more practical to consider only DBH as the independent variable because of measurement errors.

Biomass and Net Primary Production of Quercus acutissima Natural Forest Ecosystems in Pohang (포항 지역의 상수리나무 천연림 생태계의 물질생산에 관한 연구)

  • 박관수;권기원;송호경
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.1
    • /
    • pp.25-31
    • /
    • 2002
  • This study was carried out to estimate aboveground biomass and net primary production in an average 37-year-old Quercus acutissima stand of Pohang area. Ten sample trees were cut in the forest and soil samples were collected in August, 2001. Estimation for aboveground biomass and net primary production was made by the equation model Wt=$aD^b$ where Wt is ovendry weight in kg and D is DBH in cm. Total aboveground biomass was 115.47ton/ha in the study forest. The proportion of each tree component to total aboveground biomass was high in order of bolewood(63.9%), branches(19.8%), bolebark(16.2%) and leaves(1.2%) in the study forest. Aboveground total net primary production was estimated at 7.89ton/ha in the study area. The proportion of each tree component to total net primary production was high in order of bolewood, bolebark, branch, and leaves.

  • PDF

Biomass and Net Primary Production of Betula platyphylla and Juglans mandshurica Plantations in Chungju Area (충주지역(忠州地域)의 자작나무와 가래나무 조림지(造林地)의 물질생산(物質生産)에 관(關)한 연구(硏究))

  • Park, Gwan-Soo;Song, Ho-Kyung;Kwon, Ki-Won
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.2
    • /
    • pp.249-255
    • /
    • 2000
  • This study has been carried out to estimate aboveground biomass and net primary production in a 22-year-old Betula platyphylla and 24-year-old juglans mandshurica plantations. Nine sample trees were cut in each plantation. Estimations for aboveground biomass and net primary production were made by the equation model $Wt=aD^b$ where Wt is ovendry weight in kg and D is DBH in cm. Total aboveground biomass was 79.33t/ha in Betula platyphylla plantation and 67.47t/ha in Juglans mandshurica plantation. The proportion of each tree component to total aboveground biomass was high in order of bolewood, branches, bolebark, and leaves in the two plantations. Aboveground total net primary production was estimated at 9,92t/ha in Betula platyphylla plantation and 11.79t/ha in Juglans mandshurica plantation. There was greater net primary production in Juglans mandshurica plantation than in Betula platyphylla plantation because of greater bolewood, bolebark, current twig, and branch net primary productions in Juglans mandshurica plantation than in Betula platyphylla plantation.

  • PDF