Browse > Article

Development of Biomass Allometric Equations for Pinus densiflora in Central Region and Quercus variabilis  

Son, Yeong-Mo (Div. of Forest management, Korea Forest Research Institute)
Lee, Kyeong-Hak (Div. of Forest management, Korea Forest Research Institute)
Pyo, Jung-Kee (Div. of Forest management, Korea Forest Research Institute)
Publication Information
Journal of agriculture & life science / v.45, no.4, 2011 , pp. 65-72 More about this Journal
Abstract
The objective of this research is to develop biomass allometric equation for Pinus densiflora in central region and Quercus variabilis. To develop the biomass allometric equation by species and tree component, data for Pinus densiflora in central region is collected to 30 plots (70 trees) and for Quercus variabilis is collected to 15 plots (32 trees). This study is used two independent values; (1) one based on diameter beast height, (2) the other, diameter beast height and height. And the equation forms were divided into exponential, logarithmic, and quadratic functions. The validation of biomass allometric equations were fitness index, standard error of estimate, and bias. From these methods, the most appropriate equations in estimating total tree biomass for each species are as follows: $W=aD^b$, $W=aD^bH^c$; fitness index were 0.937, 0.943 for Pinus densiflora in central region stands, and $W=a+bD+cD^2$, $W=aD^bH^c$; fitness index were 0.865, 0.874 for Quercus variabilis stands. in addition, the best performance of biomass allometric equation for Pinus densiflora in central region is $W=aD^b$, and Quercus variabilis is $W=a+bD+cD^2$. The results of this study could be useful to overcome the disadvantage of existing the biomass allometric equation and calculate reliable carbon stocks for Pinus densiflora in central region and Quercus variabilis in Korea.
Keywords
Biomass allometric equation; Weight information; Carbon stocks; Pinus densiflora; Quercus variabilis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Avery, T. E. and H. E. Burkhart. 2002. Forest Measurements. 5th Edition. McGraw- Hill, INC. pp. 321-347.
2 Alban, D. H., D. A. Pelara, and B. E. Schlaegel. 1978. Biomass and nutrient distribution in aspen, pine and spruce stands on the same soil type in Minnesota. Can. J. For. Res. 8: 290-299.   DOI
3 Clutter, J. L., J. C. Fortson, L. V. Pienaar, G. H. Brister, and R. L. Bailey. 1983. Timber Management - A Quantitive Approach. John Wiley and Sons. pp. 31-58.
4 Husch, B., T. W. Beers, and J. A. Jr. Kershaw. 2003. Forest Mensuration. Kohn Wiley and Sons, INC. pp. 162-201.
5 IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 1. General Guidance and Reporting. IPCC National Greenhouse Gas Inventory Programme. Institute for Global Environmental Strategies. pp. 3.6-3.78.
6 IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Agriculture, Forestry and Other Land Use. IPCC National Greenhouse Gas Inventory Programme. Institute for Global Environmental Strategies. pp. 4.73.
7 Kim, K. D. and C. M. Kim. 1988. Research trends on forest biomass production in Korea. J. Korean For. Engin. 8: 94-107.
8 Kim, S. Y. and J. Y. Jeong. 1985. A study on the production structure and biomass productivity of Quercus variabilis natural forest. Jour. Korean For. Soc. 70: 91-102.
9 Korea Forest Research Institute. 2010. Survey manual for biomass and soil carbon. Korea Forest Research Institute. pp. 74.
10 Parde, J. 1980. Forest Biomass. Forestry Abstracts 41: 343-362.
11 Park, I. H. and G. S. Moon. 1994. Biomass, net production and biomass estimation equations in some natural Quercus forests. Jour. Korean For. Soc. 83: 246-253.
12 Park, I. H., Y. K. Seo, D. Y. Kim, Y. H. Son, M. J. Yi, and H. O. Jin. 2003. Biomass and net production of a Quercus mongolica stand and a Quercus variabilis stand in Chuncheon, Kangwon-do. Jour. Korean For. Soc. 92: 52-57.
13 Park, G. S. and S. W. Lee. 2001. Biomass and net primary production of Quercus variabilis natural forest ecosystems in Gongju, Pohang, and Yangyang areas. Jour. Korean For. Soc. 90: 692-698.
14 SAS Institute, Inc. 2006. SAS/STAT 9.1.3 User′s Guide. SAS Institute, Inc. Cary. NC.
15 Son, Y. M., K. H. Lee, and R. H. Kim. 2007. Estimation of biomass in Korea. Jour. Korean For. Soc. 96: 477-482.
16 Son, Y., I. H. Park, M. J. Yi, H. O. Jin, D..Y. Kim, R. H. Kim, and J. O. Hwang. 2004. Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecol. Res. 19: 21-28.   DOI   ScienceOn
17 Song, C. Y. and S. W. Lee. 1996. Biomass and net primary productivity in natural forests of Quercus mongolica and Quercus variabilis. Jour. Korean For. Soc. 85.: 443- 452.
18 Whittaker, R. H. and P. L. Marks. 1975. Methods of assessing terrestrial productivity. In: Primary Productivity of the Biosphere. Springer-Verlag, New York. pp. 55-118.
19 Song, C. Y., K. S. Chang, K. S. Park, and S. W. Lee. 1996. Analysis of carbon fixation in natural forests of Quercus mongolica and Quercus variabilis. Jour. Korean For. Soc. 86: 35-45.