• 제목/요약/키워드: treatment optimization

검색결과 708건 처리시간 0.03초

Numerical Optimization of a Transonic Axial Compressor with Casing Grooves for Improvement of Operating Stability (케이싱 그루브가 장착된 천음속 축류압축기의 작동 안정성 향상을 위한 수치최적화)

  • Kim, Jin-Hyuk;Choi, Kwang-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • 제14권5호
    • /
    • pp.31-38
    • /
    • 2011
  • Optimization using a hybrid multi-objective evolutionary algorithm coupled with response surface approximation has been performed to improve the performance of a transonic axial compressor with circumferential casing grooves. In order to optimize the operating stability and peak adiabatic efficiency of the compressor with circumferential casing grooves, tip clearance, angle distribution at blade tip and the depth of the circumferential casing grooves are selected as design variables. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations. The trade-off between two objectives with the interaction of blade and casing treatment is determined and discussed with respect to the representative clusters in the Pareto-optimal solutions compared to the axial compressor without the casing treatment.

The Determination of Optimum Beam Position and Size in Radiation Treatment (방사선치료시 최적의 빔 위치와 크기 결정)

  • 박정훈;서태석;최보영;이형구;신경섭
    • Progress in Medical Physics
    • /
    • 제11권1호
    • /
    • pp.49-57
    • /
    • 2000
  • New method about the dose optimization problem in radiation treatment was researched. Since all conditions are more complex and there are more relevant variables, the solution of three-dimensional treatment planning is much more complicate than that of current two-dimensional one. There(ore, in this study, as a method to solve three-dimensional dose optimization problem, the considered variables was minized and researched by reducing the domain that solutions can exist and pre-determining the important beam parameters. First, the dangerous beam range that passes critical organ was found by coordinate transformation between linear accelerator coordinate and patient coordinate. And the beam size and rotation angle for rectangular collimator that conform tumor at arbitrary beam position was also determined. As a result, the available beam position could be reduced and the dependency on beam size and rotation angle, that is very important parameter in treatment planning, totally removed. Therefore, the resultant combinations of relevant variables could be greatly reduced and the dose optimization by objective function can be done with minimum variables. From the above results, the dose optimization problem was solved for the two-dimensional radiation treatment planning useful in clinic. The objective function was made by combination of dose gradient, critical organ dose and dose homogeniety. And the optimum variables were determined by applying step search method to objective function. From the dose distributions by optimum variables, the merit of new dose optimization method was verified and it can be implemented on commercial radiation treatment planning system with further research.

  • PDF

Multi-objective optimization of stormwater pipe networks and on-line stormwater treatment devices in an ultra-urban setting

  • Kim, Jin Hwi;Lee, Dong Hoon;Kang, Joo-Hyon
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.75-82
    • /
    • 2019
  • In a highly urbanized area, land availability is limited for the installation of space consuming stormwater systems for best management practices (BMPs), leading to the consideration of underground stormwater treatment devices connected to the stormwater pipe system. The configuration of a stormwater pipe network determines the hydrological and pollutant transport characteristics of the stormwater discharged through the pipe network, and thus should be an important design consideration for effective management of stormwater quantity and quality. This article presents a multi-objective optimization approach for designing a stormwater pipe network with on-line stormwater treatment devices to achieve an optimal trade-off between the total installation cost and the annual removal efficiency of total suspended solids (TSS). The Non-dominated Sorted Genetic Algorithm-II (NSGA-II) was adapted to solve the multi-objective optimization problem. The study site used to demonstrate the developed approach was a commercial area that has an existing pipe network with eight outfalls into an adjacent stream in Yongin City, South Korea. The stormwater management model (SWMM) was calibrated based on the data obtained from a subcatchment within the study area and was further used to simulate the flow rates and TSS discharge rates through a given pipe network for the entire study area. In the simulation, an underground stormwater treatment device was assumed to be installed at each outfall and sized proportional to the average flow rate at the outfall. The total installation cost for the pipes and underground devices was estimated based on empirical formulas using the flow rates and TSS discharge rates simulated by the SWMM. In the demonstration example, the installation cost could be reduced by up to 9% while the annual TSS removal efficiency could be increased by 4% compared to the original pipe network configuration. The annual TSS removal efficiency was relatively insensitive to the total installation cost in the Pareto-optimal solutions of the pipe network design. The results suggested that the installation cost of the pipes and stormwater treatment devices can be substantially reduced without significantly compromising the pollutant removal efficiency when the pipe network is optimally designed.

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (동적응답을 최소화하는 비구속형 제진보의 제진부위 최적설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.656-661
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beams is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. The loss factors of partially covered unconstrained beam are calculated by the modal strain energy method. Vibration responses are calculated by using the modal superposition method, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in minimizing vibration responses with unconstrained damping layer treatment.

  • PDF

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (진동응답을 최소화하는 비구속형 제진보의 제진 부위 최적설계)

  • Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제15권7호
    • /
    • pp.829-835
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beam is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. Vibration responses are calculated by using the modal superposition principle, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in suppressing nitration responses by means of unconstrained damping layer treatment.

Optimization of a Single-Channel Pump Impeller for Wastewater Treatment

  • Kim, Joon-Hyung;Cho, Bo-Min;Kim, Youn-Sung;Choi, Young-Seok;Kim, Kwang-Yong;Kim, Jin-Hyuk;Cho, Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.370-381
    • /
    • 2016
  • As a single-channel pump is used for wastewater treatment, this particular pump type can prevent performance reduction or damage caused by foreign substances. However, the design methods for single-channel pumps are different and more difficult than those for general pumps. In this study, a design optimization method to improve the hydrodynamic performance of a single-channel pump impeller is implemented. Numerical analysis was carried out by solving three-dimensional steady-state incompressible Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. As a state-of-the-art impeller design method, two design variables related to controlling the internal cross-sectional flow area of a single-channel pump impeller were selected for optimization. Efficiency was used as the objective function and was numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. An optimization process based on a radial basis neural network model was conducted systematically, and the performance of the optimum model was finally evaluated through an experimental test. Consequently, the optimum model showed improved performance compared with the base model, and the unstable flow components previously observed in the base model were suppressed remarkably well.

Enhanced of Bio-Hydrogen Production from Microalgae by Thermal Pre-Treatment (열처리를 통한 미세조류로부터 바이오수소 생산 향상)

  • Lee, Chaeyoung;Choi, Jaemin
    • Journal of Hydrogen and New Energy
    • /
    • 제24권4호
    • /
    • pp.275-281
    • /
    • 2013
  • This study was conducted to increase the amount of bio-hydrogen production from microalgae(Chlorella vulgaris) in batch reactors by thermal pre-treatment. The optimization of thermal pre-treatment was conducted using statistic experimental design of response surface methodology. Two experimental parameters of temperature and reaction time were considered. The optimization condition was founded at the coded variables of <0.52, -0.07> corresponding to the experimental of heating temperature of $95.6^{\circ}C$ and reaction time of 57.9 min, respectively. Under the optimal condition, the maximum hydrogen production was predicted to 25.3mL $H_2/g$ dry cell weight (dcw), which was 9.1 times higher value of control(2.8mL $H_2/g$ dcw).

On the numerical assessment of the separation zones in semirigid column base plate connections

  • Baniotopoulos, C.C.
    • Structural Engineering and Mechanics
    • /
    • 제2권3호
    • /
    • pp.295-309
    • /
    • 1994
  • The present paper concerns the mathematical study and the numerical treatment of the problem of semirigid connections in bolted steel column base plates by taking into account the possibility of appearance of separation phenomena on the contact surface under certain loading conditions. In order to obtain a convenient discrete form to simulate the structural behaviour of a steel column base plate, the continuous contact problem is first formulated as a variational inequality problem or, equivalently, as a quadratic programming problem. By applying an appropriate finite element scheme, the discrete problem is formulated as a quadratic optimization problem which expresses, from the standpoint of Mechanics, the principle of minimum potential energy of the semirigid connection at the state of equilibrium. For the numerical treatment of this problem, two effective and easy-to-use solution strategies based on quadratic optimization algorithms are proposed. This technique is illustrated by means of a numerical application.

Optimization of Lipid Extraction from Scenedesmus sp. Using Taguchi Approach (Scenedesmus sp.로부터 Taguchi 법을 이용한 지방추출의 최적화)

  • Kim, Na-Young;Oh, Sung-Ho;Choi, Woon-Yong;Lee, Hyeon-Yong;Lee, Shin-Young
    • KSBB Journal
    • /
    • 제25권4호
    • /
    • pp.371-378
    • /
    • 2010
  • For the biodiesel fuel production from microalgae, the lipid from wet and dry samples of green algae Scenedesmus sp. was extracted by using various solvents and pre-treatment methods. Extraction yield of the lyophilized sample was better than that of dry sample. Chloroform/methanol (2:1, v/v) and ultrasonication or homogenization method were also selected as the most effective solvent and pre-treatment methods for lipid extraction, respectively. Under these constraint conditions, optimization experiment of lipid extraction was investigated by Taguchi approach using orthogonal matrix $L_9$ ($3^4$) method. The optimum extraction conditions of lipid extraction was obtained at pre-treatment of homogenization, extraction time of 5 hour, temperature of $35^{\circ}C$, and solvent ratio of 1:20 (w/v). Yield of extraction at optimized condition was 20.55% and it was 96% of total lipid content (21.38%) of Scenedesmus sp.

Optimization of Distribution Basin Weirs at a Sewage Treatment Plant Based on Computational Fluid Analysis Using the Taguchi and Minitab Method (전산유체해석과 다구찌 및 미니탭 방법을 활용한 하수처리장 분배조 웨어 최적화)

  • Jung, Yong-Jun;Park, Hae-Sik;Cho, Young-Man
    • Journal of Environmental Science International
    • /
    • 제30권12호
    • /
    • pp.983-991
    • /
    • 2021
  • The role of the distribution basin role is to apportion incoming raw water to the primary sedimentation basin as part of the water treatment process. The purpose of this study was to calculate the amount of water in the distribution basin using computational fluid dynamics (CFD) analysis and to find a way to improve any non-uniformity. We used the Taguchi method and the minitab tool as optimization methods. The results of the CFD calculation showed that the distribution flow had a deviation of 5% at the minimum inflow, 10% at the average inflow, and 22% at the maximum inflow. At maximum flow, the appropriate heights of the 7 weirs(C, D, A, B, E, F, G) were 40 mm, 20 mm, 20 mm, 0, 0, 0, and 20 mm, respectively, according to the Taguchi optimization tool. Here, the maximum deviation of the distribution amount was 9% and the standard deviation was 23.7. The appropriate heights of the 7 weirs, according to the Minitab tool, were 40 mm, 20 mm, 20 mm, 0, 0, 0, and 20 mm, respectively, for weirs C, D, A, B, E, F, and G. Therefore, the maximum deviation of the distribution amount was 8% and the standard deviation was 17.1, which was slightly improved compared to the Taguchi method.