• Title/Summary/Keyword: traveling salesman problem

Search Result 179, Processing Time 0.032 seconds

Hybrid Parallel Genetic Algorithm for Traveling Salesman Problem (순회 판매원 문제를 위한 하이브리드 병렬 유전자 알고리즘)

  • Kim, Ki-Tae;Jeo, Geon-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.3
    • /
    • pp.107-114
    • /
    • 2011
  • Traveling salesman problem is to minimize the total cost for a traveling salesman who wants to make a tour given finite number of cities along with the cost of travel between each pair them, visiting each cities exactly once before returning home. Traveling salesman problem is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study suggests a hybrid parallel genetic algorithm(HPGA) for traveling salesman problem The suggested algorithm combines parallel genetic algorithm, nearest neighbor search, and 2-opt. The suggested algorithm has been tested on 7 problems in TSPLIB and compared the results of existing methods(heuristics, meta-heuristics, hybrid, and parallel). Experimental results shows that HPGA could obtain good solution in total travel distance minimization.

Cost Relaxation Using an Arc Set Likely to Construct an Optimal Solution for the Asymmetric Traveling Salesman Problem (비대칭 외판원문제에서 최적해에 포함될 가능성이 높은 호들을 이용한 비용완화법)

  • Kwon, Sang-Ho;SaGong, Seon-Hwa;Kang, Maing-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.17-26
    • /
    • 2008
  • The traveling salesman problem is to find tours through all cities at minimum cost ; simply visiting the cities only once that a salesman wants to visit. As such, the traveling salesman problem is a NP-complete problem ; an heuristic algorithm is preferred to an exact algorithm. In this paper, we suggest an effective cost relaxation using a candidate arc set which is obtained from a regression function for the traveling salesman problem. The proposed method sufficiently consider the characteristics of cost of arcs compared to existing methods that randomly choose the arcs for relaxation. For test beds, we used 31 instances over 100 cities existing from TSPLIB and randomly generated 100 instances from well-known instance generators. For almost every instances, the proposed method has found efficiently better solutions than the existing method.

Note on the Inverse Metric Traveling Salesman Problem Against the Minimum Spanning Tree Algorithm

  • Chung, Yerim
    • Management Science and Financial Engineering
    • /
    • v.20 no.1
    • /
    • pp.17-19
    • /
    • 2014
  • In this paper, we consider an interesting variant of the inverse minimum traveling salesman problem. Given an instance (G, w) of the minimum traveling salesman problem defined on a metric space, we fix a specified Hamiltonian cycle $HC_0$. The task is then to adjust the edge cost vector w to w' so that the new cost vector w' satisfies the triangle inequality condition and $HC_0$ can be returned by the minimum spanning tree algorithm in the TSP-instance defined with w'. The objective is to minimize the total deviation between the original and the new cost vectors with respect to the $L_1$-norm. We call this problem the inverse metric traveling salesman problem against the minimum spanning tree algorithm and show that it is closely related to the inverse metric spanning tree problem.

Differential Evolution Algorithm based on Random Key Representation for Traveling Salesman Problems (외판원 문제를 위한 난수 키 표현법 기반 차분 진화 알고리즘)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.636-643
    • /
    • 2020
  • The differential evolution algorithm is one of the meta-heuristic techniques developed to solve the real optimization problem, which is a continuous problem space. In this study, in order to use the differential evolution algorithm to solve the traveling salesman problem, which is a discontinuous problem space, a random key representation method is applied to the differential evolution algorithm. The differential evolution algorithm searches for a real space and uses the order of the indexes of the solutions sorted in ascending order as the order of city visits to find the fitness. As a result of experimentation by applying it to the benchmark traveling salesman problems which are provided in TSPLIB, it was confirmed that the proposed differential evolution algorithm based on the random key representation method has the potential to solve the traveling salesman problems.

A DNA Sequence Generation Algorithm for Traveling Salesman Problem using DNA Computing with Evolution Model (DNA 컴퓨팅과 진화 모델을 이용하여 Traveling Salesman Problem를 해결하기 위한 DNA 서열 생성 알고리즘)

  • Kim, Eun-Gyeong;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.222-227
    • /
    • 2006
  • Recently the research for Traveling Salesman Problem (TSP) using DNA computing with massive parallelism has been. However, there were difficulties in real biological experiments because the conventional method didn't reflect the precise characteristics of DNA when it express graph. Therefore, we need DNA sequence generation algorithm which can reflect DNA features and reduce biological experiment error. In this paper we proposed a DNA sequence generation algorithm that applied DNA coding method of evolution model to DNA computing. The algorithm was applied to TSP, and compared with a simple genetic algorithm. As a result, the algorithm could generate good sequences which minimize error and reduce the biologic experiment error rate.

Traveling Salesman Problem with Precedence Relations based on Genetic Algorithm (선후행 관계제약을 갖는 TSP 문제의 유전알고리즘 해법)

  • Moon, Chi-Ung;Kim, Gyu-Ung;Kim, Jong-Su;Heo, Seon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.48-51
    • /
    • 2000
  • The traveling salesman problem with precedence relations (TSPPR) is harder than general traveling salesman problem. In this paper we propose an efficient genetic algorithm (GA) to solve the TSPPR. The key concept of the proposed genetic algorithm is a topological sort (TS). The results of numerical experiments show that the proposed GA approach produces an optimal solution for the TSPPR.

  • PDF

DNA Computing Adopting DNA coding Method to solve Traveling Salesman Problem (Traveling Salesman Problem을 해결하기 위한 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • Kim, Eun-Gyeong;Yun, Hyo-Gun;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.105-111
    • /
    • 2004
  • DNA computing has been using to solve TSP (Traveling Salesman Problems). However, when the typical DNA computing is applied to TSP, it can`t efficiently express vertices and weights of between vertices. In this paper, we proposed ACO (Algorithm for Code Optimization) that applies DNA coding method to DNA computing to efficiently express vertices and weights of between vertices for TSP. We applied ACO to TSP and as a result ACO could express DNA codes which have variable lengths and weights of between vertices more efficiently than Adleman`s DNA computing algorithm could. In addition, compared to Adleman`s DNA computing algorithm, ACO could reduce search time and biological error rate by 50% and could search for a shortest path in a short time.

Greedy Heuristic Algorithm for a Multidepot Aircraft Scheduling and Crew Scheduling Problem (복수모기지의 항공기 운항계획및 승무계획 문제의 발견적 기법)

  • Jang, Byeong-Man;Park, Sun-Dal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.2
    • /
    • pp.155-163
    • /
    • 1985
  • This paper presents a heuristic algorithm for a multidepot aircraft scheduling and crew scheduling with deal-head flights. This algorithm is extended from a Greedy heuristic algorithm for a multi-depot multi-salesman traveling salesman problem. We first transform a given flight schedule into a multi-depot multi-traveling salesman problem, considering aircraft flight policies and crew management constraints. Then we solve this problem by applying a modified Greedy heuristic algorithm.

  • PDF

A Minimum Expected Length Insertion Algorithm and Grouping Local Search for the Heterogeneous Probabilistic Traveling Salesman Problem (이종 확률적 외판원 문제를 위한 최소 평균거리 삽입 및 집단적 지역 탐색 알고리듬)

  • Kim, Seung-Mo;Choi, Ki-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.114-122
    • /
    • 2010
  • The Probabilistic Traveling Salesman Problem (PTSP) is an important topic in the study of traveling salesman problem and stochastic routing problem. The goal of PTSP is to find a priori tour visiting all customers with a minimum expected length, which simply skips customers not requiring a visit in the tour. There are many existing researches for the homogeneous version of the problem, where all customers have an identical visiting probability. Otherwise, the researches for the heterogeneous version of the problem are insufficient and most of them have focused on search base algorithms. In this paper, we propose a simple construction algorithm to solve the heterogeneous PTSP. The Minimum Expected Length Insertion (MELI) algorithm is a construction algorithm and consists of processes to decide a sequence of visiting customers by inserting the one, with the minimum expected length between two customers already in the sequence. Compared with optimal solutions, the MELI algorithm generates better solutions when the average probability is low and the customers have different visiting probabilities. We also suggest a local search method which improves the initial solution generated by the MELI algorithm.

Survey of Traveling Salesman Problem

  • Kim, Chang-Eun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.22
    • /
    • pp.65-69
    • /
    • 1990
  • Two different algorithms for traveling salesman problem(TSP) will be discussed. One is the engineering approach to the TSP. The other one is Branch-and-Bound algorithm to take advantage of the special structure of combinational problems. Also a generalization of TSP will be presented.

  • PDF