The Journal of The Korea Institute of Intelligent Transport Systems
/
v.16
no.6
/
pp.112-123
/
2017
The accurate forecasting of the public transportation's transit and arrival time has become increasingly important as more people use buses and subways instead of personal vehicles under the government's public transportation promotion policy. Using bus management system (BMS) data, which provide information on the real-time bus location, operation interval, and operation history, it is now possible to analyze the bus schedule reliability. However, the punctuality should always be considered together with the operation safety. Therefore, this study suggests a new methodology to secure both reliability and safety using the BMS data. Unlike other studies, we calculated the bus travel time between two bus stops by dividing the total travel length into 6 sections using 5 different measuring points. In addition, the optimal travel time for each bus route was proposed by analyzing the mean, standard deviation and coefficient of variation of the each section's measurement. This will ensure the reliability, safety and mobility of the bus operation.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.4
no.3
s.8
/
pp.23-31
/
2005
It is essential that is the collection of more accurate data to provide reliable traffic information. Currently collection of traffic information which uses the taxi or the passenger car by the probe vehicle is low reliability. If it develops the model which estimates car travel-time by using bus travel-time, it means that the sheep or duality of information using the passenger car and the taxi by the probe vehicle than will improve. Consequently the research which develops to each situation in accordance withtraffic volume and bus whole aspect car execution yes or no and bus stand form.
Travel-time is considered the most typical and preferred traffic information for intelligent transportation systems(ITS). This paper proposes a real-time travel-time prediction method for a national highway. In this paper, the K-nearest neighbor(KNN) method is used for travel time prediction. The KNN method (a nonparametric method) is appropriate for a real-time traffic management system because the method needs no additional assumptions or parameter calibration. The performances of various models are compared based on mean absolute percentage error(MAPE) and coefficient of variation(CV). In real application, the analysis of real traffic data collected from Korean national highways indicates that the proposed model outperforms other prediction models such as the historical average model and the Kalman filter model. It is expected to improve travel-time reliability by flexibly using travel-time from the proposed model with travel-time from the interval detectors.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.14
no.6
/
pp.1-13
/
2015
Travellers consider extra travel time to be arriving their destination because of uncertainty of travel. So it is important to make predictable highway by providing information of travel time variability to traveller so as to enhance level of service at highway. In order to make predictable highway, it is necessary to develope measures of travel time variability that travellers can easily understand. Recently advanced country including the United States, travel time variability index are actively studied. In earlier study, 95percentile of travel time is considered to be most important calculation index of travel time variability. In this study, is has focused on the propriety analysis of 95percentile of travel time in domestic transportation environment. Result of analysis, All of measures(80percentile of travel time, 90percentile of travel time, 95percentile of travel time) show the tendency to increase when case of weather factor occur compare to normal condition under LOS A~D. Especially 95percentile of travel time increased sensitively.
In order to estimate the confidence level of the velocity distribution shown in a velocity image reconstructed from a travel-time tomography, the ray coverage and the inversion characteristics of the system matrix were investigated. The targets of the analysis is the first arrival travel-time, the raypath information, and the resulting velocity model. The ray coverage, degree of ray and model coupling, was estimated by the number of rays and total ray length in a velocity grid, and information regarding the resolution and uncertainties involved in the reconstructed velocity model was derived from the results of the SVD analysis of the system matrix that relates the data space (first arrival travel times) to the model space (velocity distribution in tomogram).
The purpose of this paper is to identify unreliable routes in the view of users. After headway error ratio per route and travel time error ratio per route were calculated by using BMS data, reliability which incorporated two indicators each route was calculated through data envelopment analysis. Reliability among routes and among traffic zones was compared through the results, the needs to improve severely unreliable routes and to show passengers adjusted bus schedule information considering current reliability were suggested. As a future study, reliability evaluation framework of each route needs to be developed considering operation environment by analyzing bus card data (passengers and operation speed etc.) and pooly unreliable route should be managed strictly and reformed.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.2D
/
pp.233-239
/
2006
Most research for until at now link travel time were research for mean link travel time calculate or estimate which uses the average of the individual vehicle. however, the link travel time distribution is divided caused by with the impact factor which is various traffic condition, signal operation condition and the road conditional etc. preceding study result for link travel time distribution characteristic showed that the patterns of going through traffic were divided up to 2 in the link travel times. therefore, it will be more accurate to divide up the link travel time into the one involving delay and the other without delay, rather than using the average link travel time in terms of assessing the traffic situation. this study is it analyzed transit hour distribution characteristic and a cause using examine to the variables which give an effect at link travel time distribute using simulation program and determinate link travel time distribute ratio estimation model. to assess the distribution of the link travel times, this research develops the regression model and the fuzzy model. the variables that have high level of correlations in both estimation models are the rest time of green ball and the delay vehicles. these variables were used to construct the methods in the estimation models. The comparison of the two estimation models-fuzzy and regression model- showed that fuzzy model out-competed the regression model in terms of reliability and applicability.
The purpose of this study is to determine the optimal aggregation interval to increase the reliability when estimating representative value of individual vehicle travel time collected by DSRC equipment in interrupted traffic flow section in National Highway. For this, we use the bimodal asymmetric distribution data, which is the distribution of the most representative individual vehicle travel time collected in the interrupted traffic flow section, and estimate the MSE(Mean Square Error) according to the variation of the aggregation interval of individual vehicle travel time, and determine the optimal aggregation interval. The estimation equation for the MSE estimation utilizes the maximum estimation error equation of t-distribution that can be used in asymmetric distribution. For the analysis of optimal aggregation interval size, the aggregation interval size of individual vehicle travel time was only 3 minutes or more apart from the aggregation interval size of 1-2 minutes in which the collection of data was normally lost due to the signal stop in the interrupted traffic flow section. The aggregation interval that causes the missing part in the data collection causes another error in the missing data correction process and is excluded. As a result, the optimal aggregation interval for the minimum MSE was 3~5 minutes. Considering both the efficiency of the system operation and the improvement of the reliability of calculation of the travel time, it is effective to operate the basic aggregation interval as 5 minutes as usual and to reduce the aggregation interval to 3 minutes in case of congestion.
Lee, Jae Seung;Zegras, P. Christopher;Zhao, Fang;Kim, Daehee;Kang, Junhee
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.15
no.2
/
pp.50-62
/
2016
With programmable applications that utilize sensors, such as global positioning systems and accelerometers, smartphones provide an unprecedented opportunity to collect behavioral data in an unobtrusive and cost-effective manner. This paper assesses the relative accuracy and reliability of the Future Mobility Sensing (FMS), a smartphone-based prompted-recall travel survey. We compared the data extracted from FMS with the data collected from the Korea Passenger Trip Survey (PTS), a traditional self-reported, paper-based travel survey. In total, 46 undergraduate students completed the PTS for seven consecutive days, while also carrying their smartphones with the activated FMS applications for the same time span. After completing the PTS, the participants validated their FMS data on the web-based prompted recall surveys. We then matched the validated FMS data with the PTS-based records. The FMS turns out to be superior in detecting short trips, which are usually under-reported in self-reported travel surveys. The reported PTS travel times are longer than for the FMS, suggesting that participants tend to overestimate their travel time in the PTS. This study contributes to the ongoing development of smartphone-based travel behavior data collecting methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.