Travel time forecasting, especially public bus travel time forecasting in urban areas, is a difficult and complex problem which requires a prohibitively large computation time and years of experience. As the network of target area grows with addition of streets and lanes, computational burden of the forecasting systems exponentially increases. Even though the travel time between two neighboring intersections is known a priori, it is still difficult, if not impossible, to compute the travel time between every two intersections. For the reason, previous approaches frequently have oversimplified the transportation network to show feasibilities of the problem solving algorithms. In this paper, forecasting of the travel time between every two intersections is attempted based on travel time data between two neighboring intersections. The time stamps data of public buses which recorded arrival time at predetermined bus stops was extensively collected and forecast. At first, the time stamp data was categorized to eliminate white noise, uncontrollable in forecasting, based on wavelet conversion. Then, the radial basis neural networks was applied to remaining data, which showed relatively accurate results. The success of the attempt was confirmed by the drastically reduced relative error when the nodes between the target intersections increases. In general, as the number of the nodes between target intersections increases, the relative error shows the tendency of sharp increase. The experimental results of the novel approaches, based on wavelet conversion and neural network teaming mechanism, showed the forecasting methodology is very promising.
실시간 통행시간관련자료의 집계시간간격은 보다 신뢰성있는 통행시간정보제공과 교통정보센터의 효율적인 운영을 위해 매우 중요한 요소이다. 그러나 대부분의 기존 VDS 및 TCS교통정보 데이터는 통계학적·공학적 차원에서의 합리적인 연구나 검증없이 경험적 간격으로 집계되고 있다. 본 연구의 목적은 링크 및 교통축(Corridor) 통행시간 산정 및 예측시의 최적 집계 시간간격을 결정할 수 있는 통계학적 모형을 개발하고 실제 도로망에서 수집되는 통행시간자료에 적용하는 것이다 첫째로, 본 연구는 링크 및 교통축 통행시간 산정 및 예측으로 인한 오차를 계량화하는 통계학적 모형을 제시하고, 제시된 모형의 의미를 교통류이론 측면과 통행시간정보 이용자측면에서 살펴보았다. 둘째로, 미국 Texas, Houston의 도시고속도로에서 AVI시스템을 통해 수집된 통행시간자료를 제시된 모형에 적용하였다. 적용결과 링크통행시간 산정을 위한 최적 집계시간간격보다 링크통행시간예측을 위한 최적 집계시간간격이 큰 것으로 나타났으며, 교통축 통행시간 산정 및 예측을 위한 최적 집계시간간격은 교통축을 구성하는 링크간의 상관관계 (Correlation)에 큰 영향을 받는 것으로 분석되었다.
1990년대 후반부터 구간 검지기를 이용한 링크통행시간 추정에 필요한 최소 표본수와 링크 및 경로 통행시간 추정과 예측을 위한 적정 집계간격에 대한 연구가 폭넓게 진행되어 왔다. 그러나 루프(지점)검지기를 이용한 교통정보수집체계의 경우, 합리적인 검증 없이 선정된 1분~5분의 집계간격을 이용하고 있다. 본 연구의 목적은 지점검지기인 루프검지기를 이용하여 통행시간자료를 수지하는 경우, 링크 및 경로 통행시간 추정과 예측을 위한 적정 집계간격 결정 모형을 개발하고 현장의 자료에 적용하는 것이다. 본 논문은 링크 및 경로 통행시간 추정을 위한 적정 집계간격 결정 모형으로 CVMSE(Cross Validated Mean Square Error)방법을 이용하였으며, 링크 및 경로 통행시간 예측을 위한 적정 집계간격 결정 모형으로는 FMSE(Forecasting Mean Square Error)를 적용하였다. 개발된 방법론은 경부고속도로의 루프이터에 적용되었다. 적용결과 링크 및 경로 통행시간 추정을 위한 적정 집계간격은 3분~5분으로, 링크 및 경로 통행시간 예측을 위한 적정 집계간격은 10~20분으로 분석되었다.
The purpose of this study is to analyze the effect of intervention variables which may affect the air travel demand for Jeju domestic flights and to anticipate the air travel demand for Jeju domestic flights. The air travel demand forecasts for Jeju domestic flights are conducted through ARIMA-Intervention Model selecting five intervention variables such as 2002 World Cup games, SARS, novel swine-origin influenza A, Yeonpyeongdo bombardment and Japan big earthquake. The result revealed that the risk factor such as the threat of war that is a negative intervention incident and occurred in Korea has the negative impact on the air travel demand due to the response of risk aversion by users. However, when local natural disasters (earthquakes, etc) occurring in neighboring courtiers and global outbreak of an epidemic gave the negligible impact to Korea, negative intervention incident would have a positive impact on air travel demand as a response to find alternative due to rational expectation of air travel customers. Also we realize that a mega-event such as the 2002 Korea-Japan World Cup games reduced the air travel demand in a short-term period unlike the perception in which it will increase the air travel demand and travel demands in the corresponding area.
고속도로에서의 지점검지체계로부터 수집 가공 처리된 과거 통행시간 이력자료를 이용한 통행시간 예측시, 사용되는 대표값과 과거 데이터량에 따라 예측의 정확성이 결정되나 이에 대한 체계적인 연구가 없는 실정이다. 따라서 본 연구의 목적은 신뢰성 있는 통행시간 예측을 위해 통행시간 이력자료의 적정 대표간과 과거 데이터량을 결정하기 위한 방법론을 제시하였다. 과거 통행시간 이력자료의 적정 대표값은 예측오차의 평균이 가장 적은 대표값을 선정할 수 있으며, 적정 과거 데이터량은 비슷한 속성을 가진 과거 통행시간 이력자료의 개별간의 차이 또는 집단 간의 차이를 최소화하는 CVMSE(Cross Validated Mean Square Error)방법을 이용하여 결정할 수 있다. 한국도로공사의 고속도로 지점검지기 자료에 적용한 결과, 적절 대표값은 중앙값으로 분석되었으며, 통행시간 예측을 위한 적정 과거 데이터량은 60일로 분석되었다.
Purpose: The purpose of this study is to explain the pivotal role of the travel forecasting process in urban transportation planning. This study emphasizes the use of travel forecasting models to anticipate future traffic. Method: This study examines the methodology used in urban travel demand modeling within transportation planning, specifically focusing on the Urban Transportation Modeling System (UTMS). UTMS is designed to predict various aspects of urban transportation, including quantities, temporal patterns, origin-destination pairs, modal preferences, and optimal routes in metropolitan areas. By analyzing UTMS and its operational framework, this research aims to enhance an understanding of contemporary urban travel demand modeling practices and their implications for transportation planning and urban mobility management. Result: The result of this study provides a nuanced understanding of travel dynamics, emphasizing the influence of variables such as average income, household size, and vehicle ownership on travel patterns. Furthermore, the attraction model highlights specific areas of significance, elucidating the role of retail locations, non-retail areas, and other locales in shaping the observed dynamics of transportation. Conclusion: The study methodically addressed urban travel dynamics in a four-ward area, employing a comprehensive modeling approach involving trip generation, attraction, distribution, modal split, and assignment. The findings, such as the prevalence of motorbikes as the primary mode of transportation and the impact of adjusted traffic patterns on reduced travel times, offer valuable insights for urban planners and policymakers in optimizing transportation networks. These insights can inform strategic decisions to enhance efficiency and sustainability in urban mobility planning.
본 연구에서는 운전자 입장에서 원하는 고속도로 다구간의 통행시간을 예측하는 모형을 구축하였다. 현재 지점검지기를 통해 생성되는 예상통행시간 정보는 장거리 통행시 발생되는 시간처짐현상을 반영하지 못하고 있다. 이로 인하여 도로이용자들의 신뢰가 떨어져. 전체적인 ATIS의 효과를 거두지 못하고 있다. 따라서 본 연구에서는 시간처짐 현상과 영업소 지체를 반영한 고속도로 다구간의 통행시간예측을 위하여, 한국도로공사에서 운영중인 검지기의 교통량 자료와 TCS자료를 사용하였다. 또한 실제 시스템에의 적용을 위해 이상치가 섞여 있는 자료를 유지하였다. 예측에 사용된 모형은 3개의 입력유니트와 2개의 출력유니트를 가지는 선행신경망의 형태로 구성하였으며, 학습방법은 역전파법을 이용하였다. 또한 학습속도와 예측력에 영향을 주는 학습계수, 은닉층의 유니트수, 반복 횟수에 따라 12개의 대안을 구성하여 예측결과를 토대로 최적대안을 모형으로 채택하였다. 이러한 본 연구의 자료특성에 의해 원하는 구간까지의 통행시간을 구할 수가 있다.
The rail passenger demand for the railroad operations required a short-term demand rather than a long-term demand. The rail passenger demand can be classified according to the purpose. First, the rail passenger demand will be use to the restructure of line planning on the current operating line. Second, the rail passenger demand will be use to the line planning on the new line and purchasing the train vehicles. The objective of study is to analyze the travel behavior of rail passenger for modeling of short-term demand forecasting. The scope of research is the passenger of KTX. The travel behavior was analyzed the daily trips, origin/destination trips for KTX passenger using the ANOVA and the clustering analysis. The results of analysis provide the directions of the short-term demand forecasting model.
도로개선사업의 타당성 분석을 위해 장래 수요추정은 필수적이며, 이는 사업 여부를 결정하는데 있어서 핵심적 사안이 되지만 현재 장래 수요추정에 적용되는 4단계 수요예측모형은 장래 고정된 기종점통행량을 이용하여 경로 전환된 통행량에 대해서만 분석할 뿐, 교통시스템의 향상으로 인해 추가로 발생되는 수요(유발통행수요-Induced Highway Travel Demand 또는 잠재수요-Latent Demand)는 충분히 고려되지 않고 있어 정확성에 대한 의심의 여지가 있다. 이에 본 연구는 교통수요가 결정되는 원리와 유사한 경제학 이론을 적용한 유발통행수요 추정모형과 광범위한 분석에 적용할 수 있는 유발통행수요 추정프로그램(I.D.A)을 개발하였다. 본 연구에서 구축된 모형을 통해 서울시 강변북로 일부구간의 도로개선에 따른 유발통행수요를 추정한 결과. 추정된 유발통행수요는 경로전환수요의 15% 정도인 것으로 분석되었다. 본 연구를 통해 유발통행수요가 존재할 것으로 확신되는 사업에 대한 유발통행수요를 계량적으로 추정하여 도로개선의 타당성분석결과에 대한 신뢰성을 보다 향상시킬 수 있을 것으로 기대한다.
Communications for Statistical Applications and Methods
/
제19권1호
/
pp.183-192
/
2012
본연구는 KTX의 단기수요예측 방향을 설정하기 위한 통행행태 분석이 목적이다. 분석결과는 첫째, 이상치 판단기준은 통행량 표준편차의 2배가 적정한 것으로 판단된다. 둘째, ANOVA 분석을 이용하여 요일별 통행량의 동질여부를 분석한 결과 주중(월~목)과 주말(금~일)로 구분되었다. 셋째, 통행빈도, 통행량균, 통행거리를 이용하여 철도역간 O/D에 대해 군집분석을 시행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.