• Title/Summary/Keyword: travel forecasting

Search Result 108, Processing Time 0.024 seconds

Enhancement of Forecasting Accuracy in Time-Series Data, Basedon Wavelet Transformation and Neural Network Training (Wavelet 변환과 신경망을 이용한 시계열 데이터 예측력의 향상)

  • 신승원;최종욱;노정현
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.2
    • /
    • pp.23-34
    • /
    • 1998
  • Travel time forecasting, especially public bus travel time forecasting in urban areas, is a difficult and complex problem which requires a prohibitively large computation time and years of experience. As the network of target area grows with addition of streets and lanes, computational burden of the forecasting systems exponentially increases. Even though the travel time between two neighboring intersections is known a priori, it is still difficult, if not impossible, to compute the travel time between every two intersections. For the reason, previous approaches frequently have oversimplified the transportation network to show feasibilities of the problem solving algorithms. In this paper, forecasting of the travel time between every two intersections is attempted based on travel time data between two neighboring intersections. The time stamps data of public buses which recorded arrival time at predetermined bus stops was extensively collected and forecast. At first, the time stamp data was categorized to eliminate white noise, uncontrollable in forecasting, based on wavelet conversion. Then, the radial basis neural networks was applied to remaining data, which showed relatively accurate results. The success of the attempt was confirmed by the drastically reduced relative error when the nodes between the target intersections increases. In general, as the number of the nodes between target intersections increases, the relative error shows the tendency of sharp increase. The experimental results of the novel approaches, based on wavelet conversion and neural network teaming mechanism, showed the forecasting methodology is very promising.

  • PDF

Determining Optimal Aggregation Interval Size for Travel Time Estimation and Forecasting with Statistical Models (통행시간 산정 및 예측을 위한 최적 집계시간간격 결정에 관한 연구)

  • Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.3
    • /
    • pp.55-76
    • /
    • 2000
  • We propose a general solution methodology for identifying the optimal aggregation interval sizes as a function of the traffic dynamics and frequency of observations for four cases : i) link travel time estimation, ii) corridor/route travel time estimation, iii) link travel time forecasting. and iv) corridor/route travel time forecasting. We first develop statistical models which define Mean Square Error (MSE) for four different cases and interpret the models from a traffic flow perspective. The emphasis is on i) the tradeoff between the Precision and bias, 2) the difference between estimation and forecasting, and 3) the implication of the correlation between links on the corridor/route travel time estimation and forecasting, We then demonstrate the Proposed models to the real-world travel time data from Houston, Texas which were collected as Part of the Automatic Vehicle Identification (AVI) system of the Houston Transtar system. The best aggregation interval sizes for the link travel time estimation and forecasting were different and the function of the traffic dynamics. For the best aggregation interval sizes for the corridor/route travel time estimation and forecasting, the covariance between links had an important effect.

  • PDF

Investigating Optimal Aggregation Interval Size of Loop Detector Data for Travel Time Estimation and Predicition (통행시간 추정 및 예측을 위한 루프검지기 자료의 최적 집계간격 결정)

  • Yoo, So-Young;Rho, Jeong-Hyun;Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.109-120
    • /
    • 2004
  • Since the late of 1990, there have been number of studies on the required number of probe vehicles and/or optimal aggregation interval sizes for travel time estimation and forecasting. However, in general one to five minutes are used as aggregation intervals for the travel time estimation intervals for the travel time estimation and/or forecasting of loop detector system without a reasonable validation. The objective of this study is to deveop models for identifying optimal aggregation interval sizes of loop detector data for travel time estimation and prediction. This study developed Cross Valiated Mean Square Error (CVMSE) model for the link and route travel time forecasting, The developed models were applied to the loop detector data of Kyeongbu expressway. It was found that the optimal aggregation sizes for the travel time estimation and forecasting are three to five minutes and ten to twenty minutes, respectively.

A Study on the Air Travel Demand Forecasting using time series ARIMA-Intervention Model (ARIMA-Intervention 시계열모형을 활용한 제주 국내선 항공여객수요 추정)

  • Kim, Min-Su;Kim, Kee-Woong;Park, Sung-Sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.66-75
    • /
    • 2012
  • The purpose of this study is to analyze the effect of intervention variables which may affect the air travel demand for Jeju domestic flights and to anticipate the air travel demand for Jeju domestic flights. The air travel demand forecasts for Jeju domestic flights are conducted through ARIMA-Intervention Model selecting five intervention variables such as 2002 World Cup games, SARS, novel swine-origin influenza A, Yeonpyeongdo bombardment and Japan big earthquake. The result revealed that the risk factor such as the threat of war that is a negative intervention incident and occurred in Korea has the negative impact on the air travel demand due to the response of risk aversion by users. However, when local natural disasters (earthquakes, etc) occurring in neighboring courtiers and global outbreak of an epidemic gave the negligible impact to Korea, negative intervention incident would have a positive impact on air travel demand as a response to find alternative due to rational expectation of air travel customers. Also we realize that a mega-event such as the 2002 Korea-Japan World Cup games reduced the air travel demand in a short-term period unlike the perception in which it will increase the air travel demand and travel demands in the corresponding area.

A Study on the Construction of Historical Profiles for Freeway Travel Time Forecasting (고속도로 통행시간 예측을 위한 과거 통행시간 이력자료 구축에 관한 연구(지점 검지기를 중심으로))

  • Kim, Dong-Ho;Rho, Jeong-Hyun;Park, Dong-Joo;Park, Jee-Hyung;Kim, Han-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.131-141
    • /
    • 2008
  • The objective of this study is to propose methods for determining optimal representative value and the optimal size of historical data for reliable travel time forecasting. We selected values with the smallest mean of forecasting errors as the optimal representative value of travel time pattern data. The optimal size of historical data used was determined using the CVMSE(Cross Validated Mean Square Error) method. According to the results of applying the methods to point vehicle detection data of Korea Highway Corporation, the optimal representative value were analyzed to be median. Second, it was analyzed that 60 days' data is the optimal size of historical data usedfor travel time forecasting.

Exercising The Traditional Four-Step Transportation Model Using Simplified Transport Network of Mandalay City in Myanmar (미얀마 만달레이시의 단순화된 교통망을 이용한 전통적인 4단계 교통 모델에 관한 연구)

  • Wut Yee Lwin;Byoung-Jo Yoon;Sun-Min Lee
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.257-269
    • /
    • 2024
  • Purpose: The purpose of this study is to explain the pivotal role of the travel forecasting process in urban transportation planning. This study emphasizes the use of travel forecasting models to anticipate future traffic. Method: This study examines the methodology used in urban travel demand modeling within transportation planning, specifically focusing on the Urban Transportation Modeling System (UTMS). UTMS is designed to predict various aspects of urban transportation, including quantities, temporal patterns, origin-destination pairs, modal preferences, and optimal routes in metropolitan areas. By analyzing UTMS and its operational framework, this research aims to enhance an understanding of contemporary urban travel demand modeling practices and their implications for transportation planning and urban mobility management. Result: The result of this study provides a nuanced understanding of travel dynamics, emphasizing the influence of variables such as average income, household size, and vehicle ownership on travel patterns. Furthermore, the attraction model highlights specific areas of significance, elucidating the role of retail locations, non-retail areas, and other locales in shaping the observed dynamics of transportation. Conclusion: The study methodically addressed urban travel dynamics in a four-ward area, employing a comprehensive modeling approach involving trip generation, attraction, distribution, modal split, and assignment. The findings, such as the prevalence of motorbikes as the primary mode of transportation and the impact of adjusted traffic patterns on reduced travel times, offer valuable insights for urban planners and policymakers in optimizing transportation networks. These insights can inform strategic decisions to enhance efficiency and sustainability in urban mobility planning.

Development of a Freeway Travel Time Forecasting Model for Long Distance Section with Due Regard to Time-lag (시간처짐현상을 고려한 장거리구간 통행시간 예측 모형 개발)

  • 이의은;김정현
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.51-61
    • /
    • 2002
  • In this dissertation, We demonstrated the Travel Time forecasting model in the freeway of multi-section with regard of drives' attitude. Recently, the forecasted travel time that is furnished based on expected travel time data and advanced experiment isn't being able to reflect the time-lag phenomenon specially in case of long distance trip, so drivers don't believe any more forecasted travel time. And that's why the effects of ATIS(Advanced Traveler Information System) are reduced. Therefore, in this dissertation to forecast the travel time of the freeway of multi-section reflecting the time-lag phenomenon & the delay of tollgate, we used traffic volume data & TCS data that are collected by Korea Highway Cooperation. Also keep the data of mixed unusual to applicate real system. The applied model for forecasting is consisted of feed-forward structure which has three input units & two output units and the back-propagation is utilized as studying method. Furthermore, the optimal alternative was chosen through the twelve alternative ideas which is composed of the unit number of hidden-layer & repeating number which affect studying speed & forecasting capability. In order to compare the forecasting capability of developed ANN model. the algorithm which are currently used as an information source for freeway travel time. During the comparison with reference model, MSE, MARE, MAE & T-test were executed, as the result, the model which utilized the artificial neural network performed more superior forecasting capability among the comparison index. Moreover, the calculated through the particularity of data structure which was used in this experiment.

Travel Behavior Analysis for Short-term Railroad Passenger Demand Forecasting in KTX (KTX 단기수요 예측을 위한 통행행태 분석)

  • Kim, Han-Soo;Yun, Dong-Hee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1282-1289
    • /
    • 2011
  • The rail passenger demand for the railroad operations required a short-term demand rather than a long-term demand. The rail passenger demand can be classified according to the purpose. First, the rail passenger demand will be use to the restructure of line planning on the current operating line. Second, the rail passenger demand will be use to the line planning on the new line and purchasing the train vehicles. The objective of study is to analyze the travel behavior of rail passenger for modeling of short-term demand forecasting. The scope of research is the passenger of KTX. The travel behavior was analyzed the daily trips, origin/destination trips for KTX passenger using the ANOVA and the clustering analysis. The results of analysis provide the directions of the short-term demand forecasting model.

  • PDF

Estimation of Induced Highway Travel Demand (도로교통의 유발통행수요 추정에 관한 연구)

  • Lee, Gyu-Jin;Choe, Gi-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.91-100
    • /
    • 2006
  • Travel Demand Forecasting (TDF) is an essential and critical process in the evaluation of the highway improvement Project. The four-step TDF Process has generally been used to forecast travel demand and analyze the effects of diverted travel demand based on the given Origin-Destination trips in the future. Transportation system improvements, however, generate more travel, Induced Travel Demand (ITD) or latent travel demand, which has not been considered in the project evaluation. The Purpose of this study Is to develop a model which can forecast the ITD applied theory of economics and the Program(I.D.A) which can be widely applied to project evaluation analysis. The Kang-Byun-Book-Ro expansion scenario is used to apply and analyze a real-world situation. The result highlights that as much as 15% of diverted travel demand is generated as ITD. The results of this study are expected to improve reliability of the project evaluation of the highway improvement Project.

Travel Behavior Analysis for Short-Term KTX Passenger Demand Forecasting (KTX 단기수요 예측을 위한 통행행태 분석)

  • Kim, Han-Soo;Yun, Dong-Hee;Lee, Sung-Duk
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.183-192
    • /
    • 2012
  • This study analyzes the travel behavior for short-term demand forecasting model of KTX. This research suggests the following. First, the outlier criteria is considered to appropriate twice the standard deviation of the traffic. Second, the result of a homogeneity test using ANOVA analysis has been divided into weekdays(Mon Thu and weekends(Fri Sun). Third, a cluster analysis for O/D pairs using trip frequency, traffic averages and th distance between stations was performed.