• Title/Summary/Keyword: transverse steel design

Search Result 204, Processing Time 0.024 seconds

The Rigidity of Transverse Intermediate Stiffener of Horizontally Curved Plate Girder Web Panels (강곡선 플레이트거더 복부판의 중간수직보강재 소요강성에 관한 연구)

  • Lee, Doo Sung;Park, Chan Sik;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.735-742
    • /
    • 2006
  • In this study, the ultimate shear strength behavior of transversely stiffened curved web panels was investigated through nonlinear finite element analysis. It was found that if the transverse stiffener has a sufficient rigidity, then curved web panels used in practical designs are able to develop the postbuckling strength that is equivalent to that of straight girder web panels having the same dimensional and material properties. The nonlinear analysis results indicate that in order for curved web panels to develop the potential postbuckling strength. The rigidity of the transverse stiffener needs to be increased several times the value obtained from the Guide Specifications (AASHTO, 2003). However, in the case of thick web panels where the shear design is governed by shear yielding, the stiffener rigidity does not have to be increased. From the analysis results, a simple design formula is suggested for the rigidity of transverse stiffener under strength limit state.

Bearing Strength of Hybrid Coupled Shear Wall Connections

  • Park Wan-Shin;Yun Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1065-1074
    • /
    • 2005
  • Due to lack of information, current design methods to calculate bearing strength of connections are tacit about cases in which hybrid coupled walls have connection details of stud bolts and horizontal ties. In this study, analytical study was carried out to develop model for calculating the connections strength of embedded steel section. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i. e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The results of the proposed equations in this study are in good agreement with both our test results and other test data from the literature.

Seismic Performance of RC Column-Steel Beam Connections for Large Columns (대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능)

  • Park, Hong Gun;Lee, Ho Jun;Kim, Chang Soo;Hwang, Hyeon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.

Flexure-Shear Behavior of Circular Bridge Columns under Cyclic Lateral Loads (반복 횡하중을 받는 원형교각의 휨-전단 거동)

  • Lee Jae-Hoon;Ko Seong-Hyun;Lee Dae-Hyoung;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.823-832
    • /
    • 2004
  • The purpose of this research is to investigate the flexure-shear behavior of bridge columns under seismic loads. Four full scale circular reinforced concrete columns were tested under cyclic lateral load with constant axial load. The selected test variables are aspect ratio(1.825, 2.5, 4.0), transverse steel configuration, and longitudinal steel ratio. Volumetric ratio of transverse hoop of all the columns is 0.0023 in the plastic hinge region. It corresponds to $24\%$ of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by limited ductility concept. The columns showed flexural failure or flexure-shear failure depending on the test variables. Failure behavior and seismic performance are investigated and discussed in this paper.

Seismic performance evaluation of circular composite columns by shaking table test (진동대 실험을 통한 원형 합성 기둥의 내진 성능 평가)

  • Shim, Chang-Su;Chung, Young-Soo;Park, Ji-Ho;Park, Chang-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.71-81
    • /
    • 2007
  • For the design of composite bridge piers, detail requirements for the reinforcements is not clear to satisfy the required seismic performance. Composite bridge piers were suggested to reduce the sectional dimensions and to enhance the ductility of the columns under earthquake loadings. In this paper, five specimens of concrete encased composite columns of 400mm diameter with single core steel were fabricated to investigate the seismic performance of the composite columns. Shaking table tests and a Pseudo-Dynamic test were carried out and structural behavior of small-scaled models considering near-fault motions was evaluated. Test parameters were the pace of the transverse reinforcement, lap splice of longitudinal reinforcement and encased steel member sections. The displacement ductility from shaking table tests was lower than that from the pseudo-dynamic test. Limited ductile design and 50% lap splice of longitudinal reinforcement reduced the displacement ductility. Steel ratio showed significant effect on the ultimate strength. Lap splice and low transverse reinforcements reduced the displacement capacity. The energy dissipation capacity of composite columns did not show significant difference according to details.

A Study on the Design Bending Moments of Long Span Decks with KL-510 Load (KL-510 하중을 적용한 장지간 바닥판의 설계휨모멘트에 관한 연구)

  • Chung, Chulhun;Lee, Hanjoo;Joo, Sanghoon;An, Hohyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.375-384
    • /
    • 2016
  • In the current Korea highway bridge design code (KHBDC), the criteria of concrete bridge decks are mainly based on short span decks of steel plate girder bridge, there are very little the specific criteria of long span decks in the twin steel plate girder bridge. Therefore, to put more rational and practical design criteria of the long span decks on the code, the complements of the related criteria are required in the current design code. This paper proposed the design bending moments of decks with 6.0~12.0m span for KL-510 load in direction to bridge (longitudinal direction) and perpendicular direction to bridge (transverse direction). The effects of orthotropic concrete decks, stiffness of steel girders and multiple lane loading factors (MLLF) were reflected in the design bending moments. The proposed design bending moments were compared to the design bending moments with DB-24 load.

An experimental and numerical investigation on the effect of longitudinal reinforcements in torsional resistance of RC beams

  • Khagehhosseini, A.H.;Porhosseini, R.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.247-263
    • /
    • 2013
  • It is evident that torsional resistance of a reinforced concrete (RC) member is attributed to both concrete and steel reinforcement. However, recent structural design codes neglect the contribution of concrete because of cracking. This paper reports on the results of an experimental and numerical investigation into the torsional capacity of concrete beams reinforced only by longitudinal rebars without transverse reinforcement. The experimental investigation involves six specimens tested under pure torsion. Each specimen was made using a cast-in-place concrete with different amounts of longitudinal reinforcements. To create the torsional moment, an eccentric load was applied at the end of the beam whereas the other end was fixed against twist, vertical, and transverse displacement. The experimental results were also compared with the results obtained from the nonlinear finite element analysis performed in ANSYS. The outcomes showed a good agreement between experimental and numerical investigation, indicating the capability of numerical analysis in predicting the torsional capacity of RC beams. Both experimental and numerical results showed a considerable torsional post-cracking resistance in high twist angle in test specimen. This post-cracking resistance is neglected in torsional design of RC members. This strength could be considered in the design of RC members subjected to torsion forces, leading to a more economical and precise design.

An Experimental Study on Block Shear Strength of Carbon Steel Fillet Welded Connection with Base Metal Fracture (탄소강 용접접합부의 모재블록전단내력에 관한 실험적 연구)

  • Lee, Hwa-Young;Hwang, Bo-kyung;Lee, Hoo-Chang;Kim, Tea-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • An experimental study on the ultimate behaviors of the mild carbon steel (SPHC) fillet-welded connection is presented in this paper. Seven specimens were fabricated by the shielded metal arc welding (SMAW). All specimens failed by typical block shear fracture in the base metal of welded connections not weld metal. Block shear fracture observed in the base metal of welded connection is a combination of single tensile fracture transverse to the loading direction and two shear fractures longitudinal to the loading direction. Test strengths were compared with strength predictions by the current design equations and suggested equations by previous researchers. It is known that current design specifications (AISC2010 and KBC2016) and Oosterhof & Driver's equation underestimated overly the ultimate strength of the welded connection by on average 44%, 31%, respectively and prediction by Topkaya's equation was the closest to the test results. Consequently, modified equation is required to be proposed considering the stress triaxiality effect and material property difference on the block shear strength for base metal fracture in welded connections fabricated with mild carbon steel.

Design models for predicting the resistance of headed studs in profiled sheeting

  • Vigneri, Valentino;Hicks, Stephen J.;Taras, Andreas;Odenbreit, Christoph
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.633-647
    • /
    • 2022
  • This paper presents the results from reliability analyses of the current Eurocode 4 (EN 1994-1-1) and AISC 360-16 design models for predicting the resistance of headed stud shear connectors within profiled steel sheeting, when the ribs are oriented transverse to the supporting beam. For comparison purposes, the performance of the alternative "Luxembourg" and "Stuttgart" model were also considered. From an initial database of 611 push-out tests, 269 cases were included in the study, which ensured that the results were valid over a wide range of geometrical and material properties. It was found that the current EN 1994-1-1 design rules deliver a corrected partial safety factor γM* of around 2.0, which is significantly higher than the target value 1.25. Moreover, 179 tests fell within the domain of the concrete-related failure design equation. Notwithstanding this, the EN 1994-1-1 equations provide satisfactory results for re-entrant profiled sheeting. The AISC 360-16 design equation for steel failure covers 263 of the tests in the database and delivers 𝛾M*≈2.0. Conversely, whilst the alternative "Stuttgart" model provides an improvement over the current codes, only a corrected partial safety factor of 𝛾M*=1.47 is achieved. Finally, the alternative "Luxembourg" design model was found to deliver the required target value, with a corrected partial safety factor 𝛾M* between 1.21 and 1.28. Given the fact that the Luxembourg design model is the only model that achieved the target values required by EN 1990, it is recommended as a potential candidate for inclusion within the second generation of Eurocodes.

Machine learning-based probabilistic predictions of shear resistance of welded studs in deck slab ribs transverse to beams

  • Vitaliy V. Degtyarev;Stephen J. Hicks
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.109-123
    • /
    • 2023
  • Headed studs welded to steel beams and embedded within the concrete of deck slabs are vital components of modern composite floor systems, where safety and economy depend on the accurate predictions of the stud shear resistance. The multitude of existing deck profiles and the complex behavior of studs in deck slab ribs makes developing accurate and reliable mechanical or empirical design models challenging. The paper addresses this issue by presenting a machine learning (ML) model developed from the natural gradient boosting (NGBoost) algorithm capable of producing probabilistic predictions and a database of 464 push-out tests, which is considerably larger than the databases used for developing existing design models. The proposed model outperforms models based on other ML algorithms and existing descriptive equations, including those in EC4 and AISC 360, while offering probabilistic predictions unavailable from other models and producing higher shear resistances for many cases. The present study also showed that the stud shear resistance is insensitive to the concrete elastic modulus, stud welding type, location of slab reinforcement, and other parameters considered important by existing models. The NGBoost model was interpreted by evaluating the feature importance and dependence determined with the SHapley Additive exPlanations (SHAP) method. The model was calibrated via reliability analyses in accordance with the Eurocodes to ensure that its predictions meet the required reliability level and facilitate its use in design. An interactive open-source web application was created and deployed to the cloud to allow for convenient and rapid stud shear resistance predictions with the developed model.