• 제목/요약/키워드: transverse measurements

검색결과 187건 처리시간 0.028초

A cone-beam computed tomography evaluation of buccal bone thickness following maxillary expansion

  • Akyalcin, Sercan;Schaefer, Jeffrey S.;English, Jeryl D.;Stephens, Claude R.;Winkelmann, Sam
    • Imaging Science in Dentistry
    • /
    • 제43권2호
    • /
    • pp.85-90
    • /
    • 2013
  • Purpose: This study was performed to determine the buccal alveolar bone thickness following rapid maxillary expansion (RME) using cone-beam computed tomography (CBCT). Materials and Methods: Twenty-four individuals (15 females, 9 males; 13.9 years) that underwent RME therapy were included. Each patient had CBCT images available before (T1), after (T2), and 2 to 3 years after (T3) maxillary expansion therapy. Coronal multiplanar reconstruction images were used to measure the linear transverse dimensions, inclinations of teeth, and thickness of the buccal alveolar bone. One-way ANOVA analysis was used to compare the changes between the three times of imaging. Pairwise comparisons were made with the Bonferroni method. The level of significance was established at p<0.05. Results: The mean changes between the points in time yielded significant differences for both molar and premolar transverse measurements between T1 and T2 (p<0.05) and between T1 and T3 (p<0.05). When evaluating the effect of maxillary expansion on the amount of buccal alveolar bone, a decrease between T1 and T2 and an increase between T2 and T3 were found in the buccal bone thickness of both the maxillary first premolars and maxillary first molars. However, these changes were not significant. Similar changes were observed for the angular measurements. Conclusion: RME resulted in non-significant reduction of buccal bone between T1 and T2. These changes were reversible in the long-term with no evident deleterious effects on the alveolar buccal bone.

정상인에서 5가지 체간 안정화 운동자세가 초음파 영상을 이용한 복부근 두께에 미치는 영향 (The Effect of Five Different Trunk Stabilization Exercise on Thickness of Abdominal Muscle Using an Ultrasonography Imaging in Normal People)

  • 강정현;심재훈;천승철
    • 한국전문물리치료학회지
    • /
    • 제19권3호
    • /
    • pp.1-10
    • /
    • 2012
  • The aim of this study is to compare measurements of abdominal muscle thickness using ultrasonography imaging (USI) to those using a special transducer head device, during five different trunk stabilization exercises, ultimately to determine which exercise led to the greatest muscle thickness. Thirty eight healthy subjects participated in this cross-sectional study. The five types of trunk stabilization - i.e., a sit-up on the supine, an upper and lower extremity raise with quadruped on the prone, a leg raise in sitting on the ball, trunk rolling on the ball, and balance using sling on the prone position - were each performed with an abdominal draw. The thickness of the abdominal muscle - including the transverse abdominal (TrA), internal oblique (IO), and external oblique (EO) - was measured by USI with a special transducer head device, at rest and then at contraction in each position. Data were analyzed using one-way repeated ANOVA with the level of significance set at ${\alpha}$=.05. The results were as follows: 1) the TrA thickness was statistically significant (p<.05), whereas the IO and EO thicknesses were not (p>.05); 2) among the five types of trunk stabilization, TrA thickness significantly increased with the balance using a sling in the prone position, (p<.05), whereas no significant difference was noted for the four types of trunk stabilization (p>.05); 3) reliability data showed that there was a high degree of consistency among the measurements taken using the special transducer head device (ICC=.92). In conclusion, the balance using a sling in the prone position was more effective than any of the four other types of trunk stabilization in increasing TrA thickness in healthy subjects.

Probing Polarization Modes of Ag Nanowires with Hot Electron Detection on $Au/TiO_2$ Nanodiodes

  • Lee, Young Keun;Lee, Jaemin;Lee, Hyosun;Lee, Jung-Yong;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.225-225
    • /
    • 2013
  • Nanostructured noble metals have been attractive for their unusual optical properties and are widely utilized for various purposes. The optical properties mainly originating from collective electron oscillation can assist direct energy conversion via surface plasmon resonances. Here, we investigated the effect of surface plasmons of silver nanowires on the generation of hot electrons. It is reported that the surface plasmons of silver nanowires exhibit longitudinal and transverse modes, depending on the aspect ratio of the nanowires. In order to measure the hot electron flow through the metallic nanowires, chemically modified Au/TiO2 Schottky diodes were employed as the electric contact. The silver nanowires were deposited on a Au metal layer via the spray method to control uniformity and the amount of silver nanowire deposited. We measured the hot electron flow generated by photon absorption on the silver nanowires deposited on the Au/TiO2 Schottky diodes. The incident photon-to-current efficiency was measured a function of the photon energy, revealing two polarization modes of siliver nanowires: transverse and longitudinal modes. UV-Vis spectra exhibited two polarization modes, which are also consistent with the photocurrent measurements. Good correlation between the IPCE and UV-vis measurements suggests that hot electron measurement on nanowires on nanodiodes is a useful way to reveal the intrinsic properties of surface plasmons of nanowires.

  • PDF

High-Frequency Bistatic Scattering from a Corrugated Sediment Surface

  • Cho, Hong-Sang;La, Hyoung-Sul;Yoon, Kwan-Seob;Na, Jung-Yul;Kim, Bong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • 제25권2E호
    • /
    • pp.60-68
    • /
    • 2006
  • High-frequency bistatic scattering measurements from a corrugated surface were made in an acoustic water tank. First the azimuthal scattering pattern was measured from an artificially corrugated surface which has varying impedance. The corrugated surface was installed both transverse to the direction of incident wave and longitudinal to the direction of incident wave. The angle between the corrugated surface and the direction of the incident wave was about $45^{\circ}$. Second, the scattering strengths were measured from the flat sediment and the corrugated sediment. A critical angle of about $37^{\circ}$ was calculated in the acoustic water tank. The measurements were made at three fixed grazing angles: $33^{\circ}$ (lower than critical angle), $37^{\circ}$ (critical angle), and $41^{\circ}$ (higher than critical angle). The scattering angle and the grazing angle are equal in each measurement. Frequencies were from 50 kHz to 100 kHz with an increment of 1 kHz. The corrugated sediment was made transverse to the direction of the incident wave. The first measurement indicates that the scattering patterns depend on the relations between the corrugated surface and the direction of the incident wave. In the second measurement, the data measured from the flat sediment were compared to the APL-UW model and to the NRL model. The NRL model's output shows more favorable comparisons than the APL-UW model. In case of the corrugated sediment, the model and the measured data are different because the models used an isotropic wave spectrum of sediment roughness in the scattering calculations. The isotropic wave spectrum consists of $w_2$ and ${\gamma}_2$. These constants derived from sediment names or bulk size. The model which used the constants didn't consider the effect of a corrugated surface. In order to consider a corrugated surface, the constants were varied in the APL-UW model.

Long-term stability of dentoalveolar, skeletal, and soft tissue changes after non-extraction treatment with a self-ligating system

  • Basciftci, Faruk Ayhan;Akin, Mehmet;Ileri, Zehra;Bayram, Sinem
    • 대한치과교정학회지
    • /
    • 제44권3호
    • /
    • pp.119-127
    • /
    • 2014
  • Objective: To evaluate the long-term effects of self-ligating brackets (SLBs) on transverse dimensions of arches and skeletal and soft tissues and to quantitatively evaluate the treatment outcome after non-extraction treatment with SLBs. Methods: The sample consisted of 24 (18 female and six male) subjects, with a mean age of $14.23{\pm}2.19$ years, who received treatment with the Damon$^{(R)}$3 appliances. Complete records including cephalometric radiographs and plaster models were obtained before treatment (T1), immediately after treatment (T2), six months after treatment (T3), and two years (T4) after treatment. Digital study models were generated. Twenty lateral cephalometric, six frontal cephalometric, and eight dental cast measurements were examined. The Peer Assessment Rating index was used to measure the treatment outcome. The Wilcoxon test was applied for statistical analysis of the changes. Results: There were significant increases in all transverse dental cast measurements with active treatment. There was some significant relapse in the long term, particularly in maxillary width (p < 0.05). Statistically significant increases were found in nasal (p < 0.001), maxillary base, upper molar, lower intercanine, and antigonial (p < 0.05) widths in T1-T2. Lower incisors were proclined and protruded in T1-T2. Conclusions: SLBs correct crowding by mechanisms involving incisor proclination and protrusion and expansion of the dental arches, without induction of clinically significant changes in hard and soft tissues of the face.

Concurrent Validity and Test-retest Reliability of the Core Stability Test Using Ultrasound Imaging and Electromyography Measurements

  • Yoo, Seungju;Lee, Nam-Gi;Park, Chanhee;You, Joshua (Sung) Hyun
    • 한국전문물리치료학회지
    • /
    • 제28권3호
    • /
    • pp.186-193
    • /
    • 2021
  • Background: While the formal test has been used to provide a quantitative measurement of core stability, studies have reported inconsistent results regarding its test-retest and intraobserver reliabilities. Furthermore, the validity of the formal test has never been established. Objects: This study aimed to establish the concurrent validity and test-retest reliability of the formal test. Methods: Twenty-two young adults with and without core instability (23.1 ± 2.0 years) were recruited. Concurrent validity was determined by comparing the muscle thickness changes of the external oblique, internal oblique, and transverse abdominal muscle to changes in core stability pressure during the formal test using ultrasound (US) imaging and pressure biofeedback, respectively. For the test-retest reliability, muscle thickness and pressure changes were repeatedly measured approximately 24 hours apart. Electromyography (EMG) was used to monitor trunk muscle activity during the formal test. Results: The Pearson's correlation analysis showed an excellent correlation between transverse abdominal thickness and pressure biofeedback unit (PBU) pressure as well as internal oblique thickness and PBU pressure, ranging from r = 0.856-0.980, p < 0.05. The test-retest reliability was good, intraclass correlation coefficient (ICC1,2) = 0.876 for the core stability pressure measure and ICC1,2 = 0.939 to 0.989 for the abdominal muscle thickness measure. Conclusion: Our results provide clinical evidence that the formal test is valid and reliable, when concurrently incorporated into EMG and US measurements.

전신진동 자극 훈련이 경직형 뇌성마비 아동의 배가로근 두께 및 앉은 자세 균형에 미치는 영향 (Effects of Wole Body Vibration Training on Transverse Abdominis Muscle Thickness and Sitting Balance in Spastic Cerebral Palsy)

  • 윤혜령;이은주
    • 대한물리치료과학회지
    • /
    • 제30권1호
    • /
    • pp.72-84
    • /
    • 2023
  • Background: The purpose of this study was to investigate the effect of whole-body vibration stimulation training on the thickness of the transversus abdominis muscle and the balance of sitting posture in children with spastic cerebral palsy. Design: Single-subject design(A-B-A-B). Methods: The subjects of this study were 9 children with spastic cerebral palsy. The study period was 12 weeks in total, and the baseline period and the intervention period were each assigned 3 weeks. Intervention was conducted twice a week for 30 minutes. During the baseline period, trunk stabilization exercise was performed, and during the intervention period, trunk stabilization exercise and whole-body vibration stimulation training were performed. Measurements were carried out at before the experiment, baseline 1, intervention 1, baseline 2, intervention 2 and the total number of measurements was 5 times. Repeated ANOVA was performed to compare the effects of exercise according to the intervention method. Results: The thickness of the transversus abdominis muscle and the balance of the sitting posture were statistically significantly increased compared to the baseline during whole-body vibration stimulation training (p<.05). Conclusion: Therefore, it was confirmed that whole-body vibration stimulation training improved the thickness of the transversus abdominis muscle in children with spastic cerebral palsy and was an effective intervention method for improving sitting posture balance.

RELIABILITY and VALIDITY of DUAL PROBE-FIXING FRAME for REHABILITATIVE ULTRASOUND IMAGING for EXERCISES with VISUAL FEEDBACK

  • Na-eun Byeon;Jang-hoon Shin;Wan-hee Lee
    • Physical Therapy Rehabilitation Science
    • /
    • 제12권3호
    • /
    • pp.259-267
    • /
    • 2023
  • Objective: Rehabilitative ultrasound imaging is a safe and noninvasive technique for evaluating muscle thickness. A dual probe-fixing frame (DPF) can provide visual feedback during exercises targeting specific muscles. The purpose of this research was to verify the reliability and validity of the DPF for dual-probe ultrasound (DPU)-based visual feedback exercises, allowing users to use both hands freely. Design: This cross-sectional study used repeated measures to compare muscle thickness measurements obtained using the handheld device and DPF with DPU. Methods: Twenty healthy adults participated in the study. Measurements were taken over two sessions, with a two-day interval between the sessions. The thicknesses of the rectus abdominis (RA) and transverse abdominis (TrA) muscles were measured using DPU. The DPF with DPU developed by the research team, was used along with a laptop-based muscle viewer. Bland-Altman analysis and intraclass correlation coefficients (ICCs) calculations were used in statistical analyses to evaluate agreement and reliability, respectively. Results: The results of the Bland-Altman analysis showed small average differences between the handheld and DPF methods for both RA and TrA muscle thicknesses. Inter-rater reliability analysis showed high ICC values for DPF measurements of both RA (0.908-0.912) and TrA (0.892-741) muscle thicknesses. Intra-rater reliability analysis also showed good ICC values for measurements taken by a single examiner over two days. Conclusion: The findings of this study demonstrate that the DPF provides reliable and valid measurements of muscle thickness during visual feedback exercises using the DPU.

초음속 유동장 내의 공동을 이용한 연료/공기 혼합에 관한 실험적 연구 (Experimental Study on Fuel/Air Mixing using the Cavity in the Supersonic Flow)

  • 김채형;정은주;정인석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.64-71
    • /
    • 2005
  • 효과적인 초음속 연소를 위해 연료와 공기의 빠른 혼합이 필요하며, 혼합 향상을 위해 연료분사 방식에 대한 여러 연구들이 수행되어 왔다. 본 연구에서는 길이-깊이 비가 4.8, 후면 경사각이 $22.5^{\circ}$인 개방형 공동 모델을 사용하였으며, 마하수 1.92에서 운동량비에 따른 분사구 주변의 유동 특성 및 연소실 내 압력 분포를 슐리렌 가시화와 압력 측정을 사용하여 파악하였다. 운동량비는 연료의 침투거리와 분사지역의 유동에 큰 영향을 끼친다.

  • PDF

有限要素法에 의한 推進軸系의 광振動計算에 관한 硏究 (Calculation of Transverse Vibration of Ship`s Propulsion Shaftings by the Finite Element Method)

  • 전효중;김희철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.2-18
    • /
    • 1979
  • Due to increasing ship dimensions and installed propulsive power, resonance frequencies of the propeller shaft system tend to decrease and they can appear in some cases within the operating range of the shaft revolution. For calculation of transverse shaft vibrations, various methods have been proposed but as they are mainly for approximate calculation, no contented results are obtained. For fairly accurate estimation of resonance frequencies in the design stage, one can use transfer matrix method of the finite element method and former is rather prefered in ordinary cases. In this study, the finite element method which is utilized for calculation of the propulsion shaft alignment, is introduced to derive the vibration equation of the ship's propulsion shaftings. The digital computer program is developed to solve the above equation, and the details of preparing the input data are described. The method presented in the underlying report was applied to the shafting of ship which has a lignumvitae bearing to verify its reliability and the results of calculation and those of the measurements on rotating shaft show a good agreement. Calculating methods of exciting of forces and damping forces are also discussed for future work.

  • PDF