• Title/Summary/Keyword: transposon mutagenesis

Search Result 45, Processing Time 0.032 seconds

Mutagenesis of Slow Growing Rhizobium japonicum by Transposon Tn5 (Transposon Tn5를 이용한 Slow growing Rhizobium japonicum의 돌연변이 유도)

  • Kim, Sung-Hoon;Rhee, Yoon;Sun, Dae-Kyu;Yoo, Ick-Dong
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.305-311
    • /
    • 1988
  • The spectinomycin resistant strain of slow growing R. japonicum R-168 was selected to be participated in conjugation with E. coli WA803/pGS9. Tn5 was introduced from suicide vector pGS9 into R. japonicum R-168 $spr^{r}$ chromosome at the frequency of $1.0\times 10^{-5}-5.0\times 10^{-7}$ and the transconjugante were selected on the yeast extract-mannitol plate containing kanamycin ($50{\mu}$g/ml) and spectinomycin ($100{\mu}$g/ml) after 8-9 days incubation. All transconjugants we tested were found to contain Tn 5 DNA on their genome, which was confirmed by Southern hybridization experiments. R. japonicum RNa75, which had been selected through plant test, was found to be defective in symbiotic nitrogen fixing ability and the production of leghemoglobin in soybean nodules formed by the inoculation of this mutant. In addition, this mutant strain hardly developed nitrogenase activity asymbiotically in contrast with the wild type strain, indicating that some nitrogen fixing gene might be blocked in this strain and the production of leghemoglobin could be decreased by the interference in nitrogen fixing genes.

  • PDF

Identification of a Novel Genetic Locus Affecting ptsG Expression in Escherichia coli

  • Shin Dong-Woo;Lee Sang-Mi;Shin Yu-Rae;Ryu Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.795-798
    • /
    • 2006
  • The phosphoenolpyruvate-dependent carbohydrate phosphotransferase system (PTS) is responsible for the simultaneous transfer and phosphorylation of various carbon sources in Escherichia coli. The ptsG gene encoding the enzyme $IICB^{Glc}$, the membrane component of the glucose-specific PTS, is repressed by Mlc and activated by the CRP cAMP complex; various other factors, such as Fis, FruR, and ArcA, are also known to be involved in ptsG regulation. Thus, in an attempt to discover a novel gene affecting the regulation of ptsG, a mutant with a decreased ptsG transcription in the presence of glucose compared with the wild-type strain was screened using transposon random mutagenesis. The mutant was found to have a transposon insertion in yhjV, a putative gene encoding a transporter protein whose function is yet unknown.

Mutations in the PPE Genes that Confer Resistance to a Nitroimidazopyran Drug on Mycobacterium bovis Strains (Mycobacterium bovis 균주들이 nitroimidazopyran 항생제에 내성을 갖게 해주는 PPE 유전자들의 돌연변이들)

  • Bae Young-Min;Daniels Lacy
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.182-185
    • /
    • 2005
  • We used the IS1096 transposon to construct Mycobacterium bovis BCG mutants resistant to an antituberculosis drug PA-824 and isolated several different mutants. We identified the locations of the insertions and found that the insertions were at various sites including the genes for the PPE proteins. HPLC analyses of the extracts of these five PPE mutant cells showed that three mutants produced only F0, and intermediate for the synthetic pathway of coenzyme $F^{420}$, and the remaining two neither F0 nor $F^{420}$. These data suggest that the products of these PPE genes are somehow involved in the biosynthesis of the coenzyme $F^{420}$.

Genetic Organization of the Recombinant Bacillus pasteurii Urease Genes Expressed in Escherichia coli

  • Kim, Sang-Dal;Hausinger, Robert P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.108-112
    • /
    • 1994
  • The genetic organization of the urease gene cluster from an alkalophilic Bacillus pasteurii was determined by subcloning and Tn5 transposon mutagenesis of a 10.7 kilobasepair cloned fragment. A region of DNA between 5.0 and 6.0 kb in length is necessary for urease activity. In vitro transcription-translation analysis of transposon insertion mutants of the cloned urease genes demonstrated that the major ($M_r$ 67,000) and minor ($M_r$ 20,000) structural peptides of urease are encoded at one end of the urease gene cluster and at least 3 additional polypeptides are encoded by adjacent DNA sequences.

  • PDF

Tn5 lac Mediated Mutagenesis of Enterobacter sp. B54 Antagonistic to Phytophthora capsici. (Phytophthora capsici의 성장을 저해하는 Enterobacter sp. B54의 선발과 Tn5 lac을 이용한 돌연변이 유기)

  • Yoon, Sang-Hong;Choi, Chung
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.393-399
    • /
    • 1998
  • Enterobacter sp.B54 which shows antagonistic activity to Phytophthora capsici on potato dextrose agar was selected among 112 strains isolated from Korean soil. After Tn5 lac-induced mutants were obtained through Pl :: Tn5 lac mutagenesis, 2 mutants for loss of antibiosis and 1 mutant for increased antibiosis were screened by using in vitro fungal inhibition assay. When the 3 mutants affected in antibiosis were analyzed by southern hybridization with pRZ102 (ColEl :: Tn5) as a probe, its results suggest that Tn5 lac was randomly inserted into different chromosomal sites in these mutants.

  • PDF

Transposon Tn5 Mutagenesis in Acetobacter sp. HA

  • Chun, Hong-Sung;Lee, Byung-Kwon;Park, Jong-Phil;Lee, Sook-Young;Cheong, Hyeon-Sook;Lee, Jung-Sup;Yoo, Jin-Cheol;Kim, Hong-Sub
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.165-170
    • /
    • 1994
  • An efficient and convenient method of introducing transposable elements into acetic acid bacteria was developed by the method of conjugal transfer. The ampicillin-resistant strain, Acetobacter sp. HA, was selected to be conjugated with two E. coli strains, WA803 containing pGS9 and AC8001 harboring pJB4JI. The Tn5 containing suicide vector pGS9 or pJB4JI, was transferred from E. coli to Acetobacter sp. HA and kanamycin-ampicillin-resistant transconjugants obtained at high frequencies. The conjugal frequencies of pGS9 and pJB4JI were 6.20$\times$$l0^{-1} and 2.79$\times$l0{-1}$ per recipient, respectively. The transfer method was applied on four different strains of Acetobacter. The conjugal transfer frequencies ranged from 2.00$\times$$l0^{-2} to 4.45$\times$l0^{-8}$ per recipient in the three strains. Some transconjugants tested were found to contain Tn5 DNA in their genomes and this was confirmed by Southem blot analysis. This is the first study which shows that Tn5 mutagenesis can be applied to successfully isolate mutants of Acetobacter genus.

  • PDF

Studies on the Function of the Rv2435c Gene of the Mycobacterium bovis BCG (Mycobacterium bovis BCG Rv2435c 유전자의 기능에 대한 연구)

  • Lee Seung-Sil;Bae Young-Min
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.415-422
    • /
    • 2005
  • library of the mutants was prepared by transposon mutagenesis of the Mycobacterium bovis BCG. We screened this library for the resistance to an anti-tuberculosis antibiotic, PA-824. Most of the mutants resistant to the PA-824 were not able to synthesize the coenzyme $F_{420}$ which is normally produced by the wild type M. bovis BCG strains. HPLC analysis of the cellular extract showed that one of those mutants which lost the ability to synthesize $F_{420}$ still produced F0. The insertion site of the transposon in this mutant was determined by an inverse PCR and the transposon was found to be inserted in the Rv2435c open reading frame (ORF). Rv2435c ORF is predicted to encode an 80.3 kDa protein. Rv2435c protein appears to be bound to the cytoplasmic membrane, its N-terminal present in the periplasm and C-terminal in the cytoplasm. The C-terminal portion of this protein is highly homologous with the adenylyl cyclases of both prokaryotes and eukaryotes. There are 15 ORFs which have homology with the class III AC proteins in the genome of the M. tuberculosis and M. bovis. Two of those, Rv1625c and Rv2435c, are highly homologous with the mammalian ACs. We cloned the cytoplasmic domain of the Rv2435c ORF and expressed it with six histidine residues attached on its C-terminal in Escherichia coli to find out if this protein is a genuine AC. Production of that protein in E. coli was proved by purifying the histidine-tagged protein by using the Ni-NTA resin. This protein, however, failed to complement the cya mutation in E. coli, indicating that this protein lacks the AC activity. All of the further attempts to convert this protein to a functional AC by a mutagenesis with UV or hydroxylamine, or construction of several different fusion proteins with Rv1625c failed. It is, therefore, possible that Rv2435c protein might affect the conversion of F0 to $F_{420}$ not by synthesizing cAMP but by some other way.

Identification of a Gene Encoding Adenylate Kinase Involved in Antifungal Activity Expression of the Biocontrol Strain Burkholderia pyrrocinia CH-67

  • Lee, Kwang Youll;Kong, Hyun-Gi;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.28 no.4
    • /
    • pp.373-380
    • /
    • 2012
  • Burkholderia pyrrocinia CH-67 is a biocontrol bacterium with strong antifungal activity against several plant pathogenic fungi. Transposon mutagenesis was performed to identify the genes responsible for the antifungal activity of B. pyrrocinia CH-67. Of the 2,500 mutants tested using the Fulvia fulva spore screening method, a mutant deficient in antifungal activity, M208, was selected. DNA sequence analysis of the transposon-inserted region revealed that a gene encoding an adenylate kinase-related kinase was disrupted in M208. Antifungal activity was restored in M208 when a full-length adenylate kinase gene with its promoter was introduced in trans. The deduced amino acid sequence of adenylate kinase from CH-67 was 80% identical to that of B. cenocepacia MCO-3. Adenosine diphosphate supplementation or high levels of adenosine triphosphate and adenosine monophosphate together restored antifungal activity in M208, suggesting that adenylate kinase of B. pyrrocinia CH-67 is involved in antifungal activity expression.

Identification of Genes Involved in Decolorization of Crystal Violet and Malachite Green in Citrobacter sp. (Citrobacter sp.에서 crystal violet와 malachite green 색소분해에 관여하는 유전자들의 동정)

  • Lee, Young-Mi;Jang, Moon-Sun;Kim, Seok-Jo;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.21-25
    • /
    • 2004
  • To identify genes involved in the decolorization of both crystal violet and malachite green, we isolated random mutants generated by transposon insertion in triphenylmethane-decolorizing bacterium, Citrobacter sp. The resulting mutant bank yielded 14 mutants with complete defect in color removal capability of both crystal violet and malachite green. Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in 5 mutants and these mutants appeared to have insertions at different sites of the chromosome. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. From comparison with a sequence database, putative protein products encoded by cmg genes were identified as follows. cmg 2 is MaIC protein in maltose transport system; cmg 6 is transcriptional regulator (LysR-type): cmg 12 is a putative oxidoreductase. The sequences deduced from two cmg genes, cmg 8 and cmg 11, showed no significant similarity to any protein with a known function. Therefore, these results indicate that these two cmg genes encode unidentified proteins responsible for decolorization of both crystal violet and malachite green.