• Title/Summary/Keyword: transport property

Search Result 321, Processing Time 0.034 seconds

Measurement and Analysis of Diffusivity for SBS/cyclic Solvent Systems Using CCIGC Technique (CCIGC 기법을 사용한 SBS/cyclic solvent 시스템에서의 확산계수 측정 및 해석)

  • Kim, Jiui;Hong, Seong Uk
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.147-151
    • /
    • 2014
  • In many polymer processing operations, the diffusion of small molecules in polymeric materials plays an important role. The fundamental physical property required to design and optimize processing operations is the mutual diffusion coefficient. To investigate the transport properties of polymer/solvent systems at infinite dilution, capillary column inverse gas chromatography (CCIGC) is often employed. In this study, diffusion and partition coefficients of cyclic solvents in styrene/butadiene/styrene (SBS) block copolymer were measured over a wide temperature range using the CCIGC technique.

Electron Transport of Low Transmission Barrier between Ferromagnet and Two-Dimensional Electron Gas (2DEG)

  • Koo, H.C.;Yi, Hyun-Jung;Ko, J.B.;Song, J.D.;Chang, Joon-Yeon;Han, S.H.
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.66-70
    • /
    • 2005
  • The junction properties between the ferromagnet (FM) and two-dimensional electron gas (2DEG) system are crucial to develop spin electronic devices. Two types of 2DEG layer, InAs and GaAs channel heterostructures, are fabricated to compare the junction properties of the two systems. InAs-based 2DEG layer with low trans-mission barrier contacts FM and shows ohmic behavior. GaAs-based 2DEG layer with $Al_2O_3$ tunneling layer is also prepared. During heat treatment at the furnace, arsenic gas was evaporated and top AlAs layer was converted to aluminum oxide layer. This new method of forming spin injection barrier on 2DEG system is very efficient to obtain tunneling behavior. In the potentiometric measurement, spin-orbit coupling of 2DEG layer is observed in the interface between FM and InAs channel 2DEG layers, which proves the efficient junction property of spin injection barrier.

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua;Shen, Wei;He, Rong-Xing;Li, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2995-3004
    • /
    • 2013
  • The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

An Experimental Study on Evaluation of Compressive Strength in Cement Mortar Using Averaged Electromagnetic Properties

  • Kwon, Seung-Jun;Maria, Q. Feng;Park, Tae-Won;Na, Ung-Jin
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • A non-destructive testing (NDT) method for evaluating physical properties of concrete including the compressive strength is highly desirable. This paper presents such an NDT method based on measurement of electromagnetic (EM) properties of the material. Experiments are carried out on cement mortar with different water/cement (W/C) ratios. Their EM properties including the conductivity and the dielectric constant are measured at different exposure conditions and curing periods over a wide frequency range of the EM wave. The compressive strength of these specimens is also tested. It is found that both the conductivity and the dielectric constant increase as the W/C ratio decreases and the curing period increases, which lead strength development in the specimens. A linear correlation is observed between the averaged EM properties over the 5 to 20 GHz frequency range and the measured compressive strength, demonstrating the effectiveness of the EM property-based NDT method in evaluating strength of OPC mortar.

A Study on the Quality Evaluation of Imported Processed Foods(1)- With Special Reference to Chinese Products- (수입식품의 품질조사연구원(1) -중국산을 중심으로-)

  • 김정옥;이규한
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.328-332
    • /
    • 1994
  • The purpose of present paper is to compare and analyze the quality of imported Chinese products with the Korean local products in terms of proximate composition, character of external appearance , ingredient composition of dried bracken , dried radish cubers, meju , dried pollack, dried mussel , and dried brown seaweed(Undaria puinnatidifida) which were imported between Oct., and Dec. 1992 and distributed in the market. Moisture recovery of dried products resulted in changed shape and incomplete moisture recovery due to an excessive drying in consideration of hygroscopic property in the course of distribution. The amounts of water soluble brown pigment were two times greater in Korean dried pollack and bracken than those of Chinese products. The content of volatile basic nitrogen (VBN) were twice in Chinese dried pollack, and this may be due to foregin odor from a long transport time and distribution process. The contents of aflatoxin in Korean products were not detectable and these of Chinese products were 5 $\mu\textrm{g}$(%) in dried pollack, bracken and radish cuber. the remaining agricultural chemicals were not detectable in all products. Because of poor technique and facilities, the external appearance of Chinese products especially dried mussels and dried pollack were not uniformed in size and color. Discoloration and foregin substance such as hair, dust were checked , Korean products were mostly packed in small size in PP or bag, and Chinese products were packed in bulk size and distributed as a bulk.

  • PDF

Effect of Microstructure on Mechanical and Electrical Properties in Ni-YSZ of Anode Supported SOFC (연료극 지지체식 고체산화물 연료전지의 기계적 및 전기적 특성에 미치는 Ni-YSZ의 미세구조의 영향)

  • Choi, Mi-Hwa;Choi, Jin-Hyeok;Lee, Tae-Hee;Yoo, Young-Sung
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.592-598
    • /
    • 2011
  • Electrode of solid oxide fuel cell must have sufficient porosity to allow gas transport to the interface with electrolyte effectively but high porosity has a negative impact on structural stability in electrode support. Thus, the upper limit of porosity is based on consideration of mechanical strength of electrode. In this study, the effect of microstructure of Ni-YSZ anode supported SOFC on the mechanical and electrical property was investigated. LSCF composite cathode and 8YSZ electrolyte were used. The porosity of the anode was modified by the amount of graphite powder and added graphite contents were 24, 18, 12 vol%, respectively. The higher the porosity, the better the electrical performance, $P_{max}$. While the flexural strength decreased with increasing the amount of graphite. But the rate of increase in electrical performance and the rate of decrease in mechanical strength were not directly proportional to amount of graphite. The optimum graphite content incorporating both electrical and mechanical performance was 18 vol%.

A study on Ar/CF4 Magnetized Inductively Coupled Plasma Using Fluid Simulation (유체시뮬레이션을 통한 Ar/CF4 자화유도결합 플라즈마의 특성 연구)

  • Kim, Yun-Gi;Son, Eui-Jeong;Wi, Sung-Suk;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.560-566
    • /
    • 2015
  • The self-consistent simulation based on the drift-diffusion approximation with anisotropic transport coefficients was performed. The RHCP-wave propagation was observed in MICP and this wave was refracted toward the high-density region. The calculated impedance seen from the antenna terminal shows that resistance component of MICP is a higher than that of ordinary ICP. Because of a higher resistance, the power transfer efficiency was improved to 95%. This property is practically important for large-size, low-pressure plasma sources because high resistance corresponds to high power-transfer efficiency and stable impedance matching characteristics.

Coating Property of Hybrid Structured Photo-Electrode to Increase Dye-Sensitized Solar Cells Efficiency (염료감응형 태양전지의 효율 향상을 위한 하이브리드 구조 광전극의 코팅특성)

  • Kim, Min-Hee;Lee, Hyung-Woo;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • The hybrid structured photo-electrode for dye-sensitized solar cells was fabricated based on the composites of $TiO_2$ nanoparticles and nanowires. Three samples with different hybrid structures were prepared with 17 vol%, 43 vol%, and 100 vol% nanowires. The energy conversion efficiency was enhanced from 5.54% for pure nanoparticle cells to 6.01% for the hybrid structure with 17 vol% nanowires. For the hybrid structured layers with high nanowires concentration (43 vol% and 100 vol%), the efficiency decreased with the nanowire concentration, because of the decrease of specific surface area, and of thus decreased current density. The random orientations of $TiO_2$ nanowires can be preserved by the doctor blade process, resulted in the enhanced efficiency. The hybrid structured $TiO_2$ layer can possess the advantages of the high surface area of nanoparticles and the rapid electron transport rate and the light scattering effect of nanowires.

Groundwater Flow Characteristics in Crystalline Rock : Review (결정질암반에서의 지하수유동 연구경향)

  • 김천수
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.137-145
    • /
    • 1991
  • Groundwater flow in fractured rocks generates many challenging problems to scientist and engineers in the projects related to oil and geothermal reservoirs, subsurface contaminations and underground openings. To circumvent these problems, the numerical simulation of groundwater system is used as an established tool in these days. Discrete modelling approach emphasizes geometric parameters, aperture and transport properties of fracture. On the other hand, continuum modelling approach uses the parameters formulated in a way of average hydraulic property. In recent years, the results of field observations from underground opening indicate that groundwater in rock mass flows in a channel form. The channel flow is postulated as the result of the combined effects of geometric pattern and aperture variation.

  • PDF

Gas Permeation Properties of Hydroxyl-Group Containing Polyimide Membranes

  • Jung, Chul-Ho;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • A series of hydroxyl-group containing polyimides (HPIs) were prepared in order to investigate the structure-gas permeation property relationship. Each polymer membrane had structural characteristics that varied according to the dianhydride monomers. The imidization processes were monitored using spectroscopic and thermog-ravimetric analyses. The single gas permeability of He, $H_2$, $CO_2$, $O_2$, $N_2$ and $CH_4$ were measured and compared in order to determine the effect of the polymer structure and functional -OH groups on the gas transport properties. Surprisingly, the ideal selectivity of $CO_2/CH_4$ and $H_2/CH_4$ increased with increasing level of -OH incorporation, which affected the diffusion of $H_2$ or the solubility of $CO_2$ in HPIs. For $H_2/CH_4$ separation, the difference in the diffusion coefficients of $H_2$ and $CH_4$ was the main factor for improving the performance without showing any changes in the solubility coefficients. However, the solubility coefficient of $CO_2$ in the HPIs increased at least four fold compared with the conventional polyimide membranes depending on the polymer structures. Based on these results, the polymer membranes modified with -OH groups in the polymer backbone showed favorable gas permeation and separation performance.