• Title/Summary/Keyword: transport property

Search Result 321, Processing Time 0.031 seconds

Geometric and Mechanical Characteristics of the Boxthorn Berry (구기자의 품종별 기하하적 및 기계적 특성)

  • Kim, Woong;Lee, Seung-Kee;Cho, Sung-Ho;Woong, Han Jae
    • The Korean Journal of Community Living Science
    • /
    • v.25 no.3
    • /
    • pp.383-388
    • /
    • 2014
  • This study was examined the physical characteristics (geometry, yield strength, thousand-seeds weight, true density, and moisture content) required for mechanization-related technologies such as (harvesting, washing, transport, and drying). Large differences in the size and shape of boxthorn berries(Jangmyeong, Bullo, Chungmyeong, and Hokwang) are used to analyze these physical properties. The average diameter, volume, surface area, and sphericity rate are calculated using long and short diameters of the boxthorn berry according to its variety. Hokwang has the largest measured surface area, and Bullo, the smallest. Average yield strength is 1.78 kPa and the mechanical pressure of soft boxthorn berries is not more than 1 kPa. Bullo has the highest true density. The optimum drying time for the measurement of moisture content is 4 hours at the drying temperature of $100^{\circ}C$.

Specific Surface Area and Pore Structure Changes of Calcined Lime with Calcination and Sulfation Reaction (소성과 황화반응에 따른 생석회의 비표면적 및 기공구조 변화)

  • 강순국;정명규
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.19-29
    • /
    • 1998
  • The calcination reactivity of limestone and physical property changes of calcined lime were investigated with a temperature($720~1000^{\circ}C$ under atmospheric gas($N_2$, $CO_2$) conditions. The mechanisms of mass transport in a lime matrix were represented by the evaporation and condensation (${\gamma}=1.7$) at $1000^{\circ}C$ and the volume diffusion (${\gamma}=2.7$) at $800^{\circ}C$, which was obtained by the specific surface area of calcined lime with sintering conditions. Also, the effect of physical property on the reactivity of sulfation reaction was determined by the changes of pore size with $lime-SO_2$ reaction in this work. The initial sulfation rate of calcined lime increased with increasing temperature, whereas the capture capacity of $SO_2$ exhibited a maximum value at $900^{\circ}C$. The pore volume of sulfated lime was decreased with increasing sulfation time, but the major pores shifted to the distribution of larger size at a temperature of $850{\;}~{\;}1000^{\circ}C$. The mean pore size of sulfated lime based on pore volume decreased gradually at $1000^{\circ}C$; however, it increased with sulfation time up to 40 min and rapidly decreased thereafter.

  • PDF

Review of progress in electromechanical properties of REBCO coated conductors for electric device applications

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2014
  • Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes have already been commercialized but still possess some issues in terms of manufacturing cost, anisotropic in-field performance, $I_c$ response to mechanical loads such as delamination, homogeneity of current transport property, and production length. Development on improving its performance properties to meet the needs in practical device applications is underway and simplification of the tape's architecture and manufacturing process are also being considered to enhance the performance-cost ratio. As compared to low temperature superconductors (LTS), high temperature superconductor (HTS) REBCO CC tapes provide a much wider range of operating temperature and a higher critical current density at 4.2 K making it more attractive in magnet and coil applications. The superior properties of the REBCO CC tapes under magnetic field have led to the development of superconducting magnets capable of producing field way above 23.5 T. In order to achieve its optimum performance, the electromechanical properties under different deformation modes and magnetic field should be evaluated for practical device design. This paper gives an overview of the effects of mechanical stress/strain on $I_c$ in HTS CC tapes due to uniaxial tension, bending deformation, transverse load, and including the electrical performance of a CC tape joint which were performed by our group at ANU in the last decade.

Establishment of Aerospace Composite Materials Data Center for Qualification

  • Lee, Ho-Sung;Rhee, Seung Yun;Yoon, Jong-Hoon;Yoo, Joon-Tae;Min, Kyung Ju
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.402-407
    • /
    • 2015
  • It is well known that the polymer matrix composite materials have good specific strength, making them appropriate for use in transport vehicle. Since the property of composite materials can be obtained only after manufacturing parts, the property depends on greatly on the fabrication process, which is different from metallic system. Therefore, in order to use composite materials for aircraft, the certifying agency requires a robust database with extensive tests and proof of the process unlike metals. Recently developed material qualification methodology by NCAMP (National Center for Advanced Materials Performance) has been accepted by FAA and EASA and can be applied to type certificate reducing time and cost of developing a composite materials database for aircraft application. This paper summarizes a study to establish the composite materials database to apply the NCAMP methodology to composite materials characterization for composite aircraft and to provide the effective materials database through Aerospace Composite Materials Data Center to be approved by Korea Civil Aviation Certification Agency.

Cruciform Thiophene-based Molecules as Organic Semiconductors for Field Effect Transistor Applications

  • Choi, Dong-Hoon;Kim, Dae-Chul;Kim, Kyung-Hwan;Cho, Min-Ju;Jin, Jung-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.170-173
    • /
    • 2007
  • Cruciform conjugated molecule, 4(DP3T)-benzene bearing terthiophene moieties has been synthesized through Horner-Emmons Reaction using 5-dodecyl-5"-aldehyde-[2,2';5',2"] terthiophene as dendrons and octaethyl benzene- 1,2,4,5-tetrayltetrakis(methylene)tetraphosphonate as the core unit; this molecule has been fully characterized. The terthiophene-based molecule exhibits good solubility in common organic solvents and good self-film forming property. They are intrinsically crystalline as they exhibit well-defined X-ray diffraction patterns from uniform orientations of molecules. Thus, intermolecular interaction can be enhanced to affect the carrier transport phenomena after annealing at $148^{\circ}C$. The semiconducting property of 4(DP3T)-benzene have been evaluated in organic field-effect transistors. 4(DP3T)-benzene exhibit carrier mobility as high as $(6.6{\pm}0.5)$ ${\times}$ $10^{-6}cm^2V^{-1}s^{-1}$.

  • PDF

Inherent Random Heterogeneity Logit Model for Stated Preference Freight Mode Choice (SP 화물수단선택을 위한 Inherent Random Heterogeneity 로짓 모형 연구)

  • KIM, Kang-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.83-92
    • /
    • 2002
  • Freight mode choice models are essential to the analysis of many areas of transport research. However, observations of actual market choices have only been made in a limited number of situations. Therefore, stated preference(SP) techniques have emerged as an alternative source of actual market choices to be used for estimating freight mode choice models. Considerable confidence exists about SP data, but little consideration has been given to the potential for estimation bias. This paper has been motivated by the theoretical side of estimating SP discrete choice models, focusing on a case study of freight mode choice. Recently developed simulation methods are used to construct inherent random heterogeneity legit models, which consider individual heterogeneity, its inheritance to the next choices and overcome the independence from irrelevant alternatives (IIA) property. This Paper contributes to the development of models dealing with heterogeneity and its inheritance, and sheds light on the heterogeneity of freight transport.

A Case Study of Sediment Transport on Trenched Backfill Granular and Cohesive Material due to Wave and Current

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.86-98
    • /
    • 2016
  • In this study, after the installation of a subsea pipeline, backfilling was performed in the trenched area. During these operations, a stability problem in the subsea pipeline occurred. The pipeline was directly impacted by environmental loading such as waves and currents that were caused by backfill material when scouring or sediment transport and siltation was carried out. Therefore, this study reviewed whether trenching was necessary, and conducted research into an indigenous seabed property that contains granular soil. A study of cohesive soil was also conducted in order to cross-correlate after calculating the values of the critical Shields parameter relevant to elements of the external environment such as waves and current, and the shear Shields parameter that depends on the actual shearing stress. In case of 1), sedimentation or erosion does not occur. In the case of 2), partial sedimentation or erosion occurs. If the case is 3), full sedimentation or erosion occurs. Therefore, in the cases of 1) or 2), problems in structural subsea pipeline stability will not occur even if partial sedimentation or erosion occurs. This should be reflected particularly in cases with granular and cohesive soil when a reduction in shear strength occurs by cyclic currents and waves. In addition, since backfilling material does not affect the original seabed shear strength, a set-up factor should be considered to use a reduced of the shear strength in the original seabed.

Effect of Fiber Content, Yarn Size and Construction of Knit Fabrics on the Buffering Capacity against Water Vapor (편성물의 섬유의 종류, 실의 굵기 및 니트타입에 따른 투습완충능력)

  • Yoo, Hwa-Sook;Hu, Yoon-Sook;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.1
    • /
    • pp.228-238
    • /
    • 1996
  • The purpose of this study was to evaluate the effect of chacteristics of knit fabrics on the microclimate of the skin simulating system. To determine the effect of characteristics of knit fabrics, vapor state of sweat pulse was simulated in the closed system. Different contents of fibers such as cotton, wool and polyester with different yarn size and knit types were chosen for specimens. The changes of humidity and temperature of air layer in the simulated systems were measured. Buffering indices, $K_d$ and $\beta_r$, were determined by considering $\alpha_p, \DeltaP_{max}, t_{max}, and tan\beta$. Physical properties of knit fabrics such as thickness, porosity, air resistance and moisture vapor transport were measured. Results showed that vapor pressure of wool was lower than cotton or polyester This was attributed to the hydrophilicity of wool which absorbed moisture rather quickly and retained in the knit fabric. The time to decrease vapor pressure was faster for polyester than cotton or wool. As a result, $K_d$ was in the order of wool> polye, item> cotton. $\beta_r$ of wool was rower than cotton or polyester due to its lowers porosity and slower desorption rate. For the yarn size, $K_d$ was in the order of 80's> 60's> 30's; thinner and lighter yarn showed better water vapor transport property. For knit type, buffering capacity of single jersey was better than interlock knit fabric. Statistical analysis showed that the air permeability was the most influential factor far the water vapor transport properties.

  • PDF

Study on Characteristic of Self-preservation Effect of CO2 Hydrate according to Temperature, Particle Diameter and Shape (온도, 직경, 형태에 따른 CO2 하이드레이트의 자기보존효과 특성 연구)

  • Kim, Yeon-Soo;Kang, Seong-Pil;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.602-608
    • /
    • 2013
  • Gas hydrate studies are attracting attention of many researchers as an innovative, economic and environmentally friendly technology when it is applied to $CO_2$ capture, transport, and storage. In this study, we investigated whether $CO_2$ hydrate shows the self-preservation effect or not, that is the key property for developing a novel $CO_2$ transport/storage method. Especially the degree of self-preservation effect for $CO_2$ hydrate was studied according to the particle size of $CO_2$ hydrate samples. We prepared three kinds of $CO_2$ hydrate samples varying their particle diameter as millimeter, micron and nano size and measured their change of weight at $-15{\sim}-30^{\circ}C$ under atmospheric pressure during 3 weeks. According to our experimental result, the lower temperature, larger particle size, and compact structure for higher density are the better conditions for obtaining self-preservation effect.

Numerical Modeling of Physical Property and Electrochemical Reaction for Solid Oxide Fuel Cells (고체 산화물 연료전지를 위한 물성치 및 전기화학반응의 수치해석 모델링)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.157-163
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) are commonly composed of ceramic compartments, and it is known that the physical properties of the ceramic materials can be changed according to the operating temperature. Thus, the physical properties of the ceramic materials have to be properly predicted to develop a highly reliable simulation model. In this study, several physical properties that can affect the performance of SOFCs were selected, and simulation models for those physical properties were developed using our own code. The Gibbs free energy for the open circuit voltage, exchange current densities for the activation polarization, and electrical conductivity for the electrolyte were calculated. In addition, the diffusion coefficient-including the binary and Knudsen diffusion mechanisms-was calculated for mass transport analysis at the porous electrode. The physical property and electrochemical reaction models were then simulated simultaneously. The numerical results were compared with the experimental results and previous works studied by Chan et al. for code validation.