• Title/Summary/Keyword: transport chain

Search Result 282, Processing Time 0.029 seconds

Effect of Latent Heat Material Placement on Inside Temperature Uniformity of Insulated Transfer Boxes (단열용기의 잠열재 배치에 따른 내부 온도 균일성에 대한 영향)

  • HyungYong Ji;Dong-Yeol Chung;Seuk Cheun Choi;Joeng-Yeol Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • An optimized design of the transportation insulated box must be considered to control the thermal damage in order to maintain the fresh condition for temperature-sensitive medicine and frozen food safety. The inside temperature of the insulated box is a natural convection enclosure state, thermal stratification naturally occurs as time passes in case of with outside heat load. The latent heat material (LHM) placement inside the box maintains the target temperature of the product for temperature fluctuations during transport, and LHM application is a common and efficient method. In this work, inside temperature stratification in an insulated box depending on the LHM pack position is numerically simulated and experimented. The insulated box is made up of vacuum insulation panel (VIP), and LHM modules are placed over six faces inside the box, with the same weight. The temperature curves for 72 hrs as experiment results clearly show the temperature stratification in the upper, middle, and lower at the LHM melting time region. However, the temperature stratification state is uniformly changed in accordance with the condition of the upper and lower placement weight of the LHM pack. And also, the temperature uniformity by changed placement weight of LHM has an effect on maintaining time for target air temperature inside the box. These results provide information on the optimized design of the insulated box with LHM.

Regulation of Chicken FABP4 Transcription by Toll-Like Receptor 3 Activation in DF-1 Cells

  • Jae Rung So;Sujung Kim;Ki-Duk Song
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.283-291
    • /
    • 2023
  • Long-chain fatty acids (LCFAs) are vital in cellular compartments, primarily regulating lipid metabolism. Fatty Acid-Binding Proteins (FABPs) facilitate LCFA transport, lipid synthesis, storage, and act as signaling molecules influencing various pathways, including inflammation. FABP4, in particular, is linked to vascular and cardio-related diseases, and it plays a role in macrophage-mediated inflammatory responses. Previous studies have identified FABP4 as not only a representative biomarker for lipogenesis but also as having correlations with immune responses. This study aims to investigate the regulation of the chicken FABP4 (chFABP4) gene by toll-like receptor 3 (TLR3) activation and determine the signaling pathways that are involved in chFABP4 transcriptional regulation. We analyzed the transcriptional regulation of chFABP4 in TLR3-stimulated DF-1 cells. The results showed that chFABP4 was up-regulated upon stimulation with polyinosinic-polycytidylic acid (PIC), a TLR3 ligand. Notably, chFABP4 transcription was independently regulated in the NF-κB signaling pathway. It was up-regulated in p38 inhibition, demonstrating that the p38 signaling pathway might suppress the transcription of chFABP4 within TLR3-activated DF-1 cells. In contrast, chFABP4 expression was down-regulated in JNK signaling pathway inhibition, suggesting the positive regulation of JNK signaling pathway for chFABP4 transcription in DF-1 cells in response to TLR3 activation, consistent with findings in macrophages. MEK pathway inhibition resulted in a similar regulation to NF-κB signaling. These results suggest that each MAPK contributes differentially to the transcriptional regulation of chFABP4 by in DF-1 cells in response to TLR3 activation.

GRIM-19 Ameliorates Multiple Sclerosis in a Mouse Model of Experimental Autoimmune Encephalomyelitis with Reciprocal Regulation of IFNγ/Th1 and IL-17A/Th17 Cells

  • Jeonghyeon Moon;Seung Hoon Lee;Seon-yeong Lee;Jaeyoon Ryu;Jooyeon Jhun;JeongWon Choi;Gyoung Nyun Kim;Sangho Roh;Sung-Hwan Park;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.40.1-40.15
    • /
    • 2020
  • The protein encoded by the Gene Associated with Retinoid-Interferon-Induced Mortality-19 (GRIM-19) is located in the mitochondrial inner membrane and is homologous to the NADH dehydrogenase 1-alpha subcomplex subunit 13 of the electron transport chain. Multiple sclerosis (MS) is a demyelinating disease that damages the brain and spinal cord. Although both the cause and mechanism of MS progression remain unclear, it is accepted that an immune disorder is involved. We explored whether GRIM-19 ameliorated MS by increasing the levels of inflammatory cytokines and immune cells; we used a mouse model of experimental autoimmune encephalomyelitis (EAE) to this end. Six-to-eight-week-old male C57BL/6, IFNγ-knockout (KO), and GRIM-19 transgenic mice were used; EAE was induced in all strains. A GRIM-19 overexpression vector (GRIM19 OVN) was electrophoretically injected intravenously. The levels of Th1 and Th17 cells were measured via flow cytometry, immunofluorescence, and immunohistochemical analysis. IL-17A and IFNγ expression levels were assessed via ELISA and quantitative PCR. IL-17A expression decreased and IFNγ expression increased in EAE mice that received injections of the GRIM-19 OVN. GRIM19 transgenic mice expressed more IFNγ than did wild-type mice; this inhibited EAE development. However, the effect of GRIM-19 overexpression on the EAE of IFNγ-KO mice did not differ from that of the empty vector. GRIM-19 expression was therapeutic for EAE mice, elevating the IFNγ level. GRIM-19 regulated the Th17/Treg cell balance.

A Study on Impact of Factors Influencing Maritime Freight Rates Using Poisson and Negative Binomial Regression Analysis on Blank Sailings of Shipping Companies (포아송 및 음이항 회귀분석을 이용한 해상운임 결정요인이 해운선사의 블랭크 세일링에 미치는 영향 분석 연구)

  • Won-Hyeong Ryu;Hyung-Sik Nam
    • Journal of Navigation and Port Research
    • /
    • v.48 no.1
    • /
    • pp.62-77
    • /
    • 2024
  • In the maritime shipping industry, imbalance between supply and demand has persistently increased, leading to the utilization of blank sailings by major shipping companies worldwide as a key means of flexibly adjusting vessel capacity in response to shipping market conditions. Traditionally, blank sailings have been frequently implemented around the Chinese New Year period. However, due to unique circumstances such as the global pandemic starting in 2020 and trade tensions between the United States and China, shipping companies have recently conducted larger-scale blank sailings compared to the past. As blank sailings directly impact freight transport delays, they can have negative repercussions from perspectives of both businesses and consumers. Therefore, this study employed Poisson regression models and negative binomial regression models to analyze the influence of maritime freight rate determinants on shipping companies' decisions regarding blank sailings, aiming to proactively address potential consequences. Results of the analysis indicated that, in Poisson regression analysis for 2M, significant variables included global container shipping volume, container vessel capacity, container ship scrapping volume, container ship newbuilding index, and OECD inflation. In negative binomial regression analysis, ocean alliance showed significance with global container shipping volume and container ship order volume, the alliance with container ship capacity and interest rates, non-alliance with international oil prices, global supply chain pressure index, container ship capacity, OECD inflation, and total alliance with container ship capacity and interest rates.

Association of apolipoprotein E polymorphisms with serum lipid profiles in obese adolescent (비만아에서 고지혈증과 Apolipoprotein E 다형성의 관계)

  • Yoon, Jung Min;Lim, Jae Woo;Cheon, Eun Jung;Ko, Kyoung Og
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.1
    • /
    • pp.42-46
    • /
    • 2008
  • Purpose : Apolipoprotein E (Apo E) plays a major role in lipoprotein metabolism and lipid transport. Many investigators have described that Apo E polymorphisms is one of the most important genetic determinants for cardiovascular disease. The purpose of this study was to evaluate the association between Apo E polymorphisms and serum lipid profiles in obese adolescent. Methods : We measured the serum concentrations of glucose, apolipoprotein (Apo) A1, Apo B, total cholesterol (TC), triglyceride (TG), HDL and LDL-cholesterol after overnight fasting in obese adolescent. Apo E polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results : 86 obese adolescents participated in this study. The body mass index (BMI) of participants were excess of 95 percentile by age and sex. Male to female ratio was 1.7 and mean age of study group was $16.2{\pm}1.8\;years$. Mean BMI was $27.4{\pm}2.5kg/m^2$. The frequency of ${\varepsilon}2$, ${\varepsilon}3$ and ${\varepsilon}4$ allele were 8.1%, 87.2% and 4.7% respectively. Study populations were classified into the following three genotypes 1) Apo E2 group (n=13, 15.1%) carrying either the ${\varepsilon}2/{\varepsilon}2$ or ${\varepsilon}2/{\varepsilon}3$ 2) Apo E3 group (n=65, 75.6%) carrying the most frequent ${\varepsilon}3/{\varepsilon}3$ 3) Apo E4 group (n=8, 9.3%) carrying either the ${\varepsilon}3/{\varepsilon}4$ or ${\varepsilon}4/{\varepsilon}4$. No differences were found among Apo E genotypes concerning age, sex, weight, height and BMI. Apo B and LDL-cholesterol concentrations were significantly higher in the Apo E4 group (P<0.05). No association were found between Apo E genotypes and glucose, Apo A1, TC, TG and HDL. Conclusions : We confirmed that serum concentrations Apo B and LDL-cholesterol were influenced by Apo E genotypes. Apo E polymorphisms seems to influence some alteration of lipid metabolism associated with obesity in adolescent.

Inferring the Transit Trip Destination Zone of Smart Card User Using Trip Chain Structure (통행사슬 구조를 이용한 교통카드 이용자의 대중교통 통행종점 추정)

  • SHIN, Kangwon
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.437-448
    • /
    • 2016
  • Some previous researches suggested a transit trip destination inference method by constructing trip chains with incomplete(missing destination) smart card dataset obtained on the entry fare control systems. To explore the feasibility of the transit trip destination inference method, the transit trip chains are constructed from the pre-paid smart card tagging data collected in Busan on October 2014 weekdays by tracing the card IDs, tagging times(boarding, alighting, transfer), and the trip linking distances between two consecutive transit trips in a daily sequences. Assuming that most trips in the transit trip chains are linked successively, the individual transit trip destination zones are inferred as the consecutive linking trip's origin zones. Applying the model to the complete trips with observed OD reveals that about 82% of the inferred trip destinations are the same as those of the observed trip destinations and the inference error defined as the difference in distance between the inferred and observed alighting stops is minimized when the trip linking distance is less than or equal to 0.5km. When applying the model to the incomplete trips with missing destinations, the overall destination missing rate decreases from 71.40% to 21.74% and approximately 77% of the destination missing trips are the single transit trips for which the destinations can not be inferable. In addition, the model remarkably reduces the destination missing rate of the multiple incomplete transit trips from 69.56% to 6.27%. Spearman's rank correlation and Chi-squared goodness-of-fit tests showed that the ranks for transit trips of each zone are not significantly affected by the inferred trips, but the transit trip distributions only using small complete trips are significantly different from those using complete and inferred trips. Therefore, it is concluded that the model should be applicable to derive a realistic transit trip patterns in cities with the incomplete smart card data.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Characterization of the cloned RNA1 gene of Saccharomyces cerevisiae (Cloning된 효모의 RNAI 유전자의 특성에 관하여)

  • Song, Young-Hwan;Kim, Dae-Young;Kim, Jin-Kyung
    • Journal of fish pathology
    • /
    • v.6 no.2
    • /
    • pp.93-101
    • /
    • 1993
  • The RNAI mutation of Saccharomyces cerevisia is a recessive and temperature sensitive lethal mutation which interferes with the production of mRNA, rRNA, and tRNA. However, the precise role of RNAI gene have not been revealed until yet. We have cloned rna1-1 mutant gene from rna1-1 mutant yeast strain(R49 ; trpl, ura3-52, rna1-1). The 3.4kb BglII fragment of wild type RNAI clone(81-2-6) contains whole RNAI gene. The genomic southern blotting with BglII digested R49 genomic DNA as a probe shows the unique and identical band with wild type 3.4kb BglII fragment. Therefore, We prepared partial BglII genomic library(3~4kb BglII fragments) into BamH I site of pUC19. The rna 1-1 mutant clone was screened with Digoxigenin(DIG)-lableled probe by high density colony hybridization. The 5'-flanking region of rna1-1 gene was sequenced by dideoxy chain termination method. The 5'-flanking sequence of RNAI gene contains three TATA-like sequence ; TAATA, TATA and TTTTAA at position of -67, -45, and -36 from first ATG codon respectively. The 5'-flanking region of wild type RNA I gene from ATG codon to -103nt was deleted with Bal31 exonuclease digestion, generating $pUC{\Delta}$/RNA I. After constructing $pYEP{\Delta}RNA$ I (consists of -103nt deleting RNA I gene, URA3 gene, $2{\mu}m$ rep. origin), pYEPrna1-1(consists of Xba I fragment of pUCrna1-1. URA3 gene, $2{\mu}m$ rep. origin), and pYEPRNAI. each plasmid was transformed into host strain(trpl, ura3-52, rna1-1) by electroporation, respectively. Yeast transformant carrying $pYEP{\Delta}RNA$ I did not complement the thermal sensitivity of rna1-1 gene. It means that TATA-like sequences in 5'-flanking region is not TATA sequence for transcribing RNAI gene and there may be other essential sequence in upstream region for the transcription of RNAI gene.

  • PDF

A study of the lipoprotein lipase inhibitory mechanism of Poncirus trifoliata water extracts (탱자 (Poncirus trifoliata)의 lipoprotein lipase 억제메커니즘)

  • Lee, Sung Mee;Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Tae Woo;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.48 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • Purpose: Poncirus trifoliata has been reported to have anti-inflammatory, antioxidant, and immune activities. However, its anti-obesity activity and the mechanism by which the water extract of dried, immature fruit of Poncirus trifoliata (PF-W) acts are not clear. This study suggests a potential mechanism associated with the anti-obesity activity of PF-W. Methods: We measured the effect of PF-W on lipoprotein lipase (LPL) regulation using enzyme-linked immunosorbent assay (ELISA) and an activity assay. The LPL regulation mechanism was examined by reverse transcription polymerase chain reaction (RT-PCR) to measure the mRNA expression of biomarkers related to protein transport and by western blot for analysis of the protein expression of the transcription factor CCAAT-enhancer-binding protein ($C/EBP{\beta}$). Results: The total polyphenol and flavonoid content of PF-W was $52.15{\pm}4.02$ and $6.56{\pm}0.47mg/g$, respectively. PF-W treatment decreased LPL content in media to $58{\pm}5%$ of that in control adipocyte media, and increased LPL content to $117{\pm}3.5%$ of that in control adipocytes, but did not affect the mRNA expression of LPL. PF-W also increased the mRNA expression of sortilin-related receptor (SorLA), a receptor that induces endocytosis and intracellular trafficking of LPL, in a concentration- and time-dependent manner. Finally, cell fractionation revealed that PF-W treatment induced the expression of $C/EBP{\beta}$, a SorLA transcription factor, in the nuclei of 3T3-L1 adipocytes. Conclusion: The LPL secretion and activity assay showed PF-W to be an LPL secretion inhibitor, and these results suggest the potential mechanism of PF-W involving inhibition of LPL secretion through $C/EBP{\beta}$-mediated induction of SorLA expression.

Effect of Blue Color-deficient Sunlight on the Productivity and Cold Tolerance of Crop Plants II. On the unsaturation of mitochondrial phospholipid (청색파장(靑色波長)영역이 결여된 태양광이 작물(作物)의 생산성(生産性) 및 내냉성(耐冷性)의 향상에 미치는 효과 II. 미토콘드리아막(膜)의 인지질불포화도(燐脂質不飽和度)의 증가)

  • Jung, Jin;Kim, Chang-Sook
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.2
    • /
    • pp.149-155
    • /
    • 1986
  • The fatty acid compositions of phospholipids extracted from leaves and leaf mitochondria, which were sampled from several horicultural plants grown under blue color-deficient sunlight (BCDS), were determined and compared with those from plants grown under natural white colored sunlight(WCS). It was found that the mitochondria isolated from plants grown under BCDS contained phospholipid whose degree of unsaturation in unit of number of double bonds per lipid molecule was remarkably higher than that from plants grown under WCS, the relative increment being $8{\sim}49%$. This was significantly larger than the relative increment, $4{\sim}8%$ for total phospholipid extracted from whole leaves grown under BCDS campared to WCS. This observation demonstrated that the blue light effect of sunlight on the chemical property of cellular membranes, as long as it was concerned with fatty acid composition, arose mainly at the mitochondrial membrane. Also observing that the degree of unsaturation of mitochondrial phospholipid was much lower than that of total phospholipid, it was interpreted that this was the consequence of rather active oxidative destruction of lipid-fatty acid components occuring in mitochondrial membrane by the reactive oxygen species, especially superoxide($O_2-$), which was known to be produced in mitochondrial inner membrane through the side reactions of the respiratory electron transport chain and also probably through the photosensitized reaction involving oxygen induced by blue colored light. Thus, it may be tentatively concluded that the extent of photosensitization in mitochondrial membrane could be considerably reduced under BCDS resulting in lowering of the $O_2-$ level in the respirating organelle The possible involvement of photodynamic action in membrane oxidation was also indicated by the fact that the typical fat-soluble antioxidant, ${\alpha}-tocopherol$, was found to be contained on a higher level in leaves under BCDS than those under WCS.

  • PDF