• Title/Summary/Keyword: transplanting time

Search Result 413, Processing Time 0.023 seconds

Optimal Transplanting Time for 'Saemimyeon' Production in Youngnam Province (영남지방에서 쌀면용 새미면 최대생산을 위한 이앙적기 설정)

  • Bae, Hyun Kyung;Hwang, Jung Dong;Seo, Jong Ho;Kim, Sang Yeol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.3
    • /
    • pp.205-209
    • /
    • 2018
  • 'Saemimyeon,' a Tongil-type rice variety (Indica x Japonica), containing high amylose content, is suitable for rice noodle production. Currently, the major parts of the rice processing industry that include products such as rice flour and noodles are expected to partially replace the wheat flour market. The volume of the rice noodle market is growing and can contribute to the rice surplus problems and farmer's income. This study was carried out to promote productivity of 'Saemimyeon' by finding the most suitable transplanting times in Youngnam Province. The transplanting times were May $10^{th}$, May $17^{th}$, May $24^{th}$, May $31^{th}$, June $7^{th}$, and June $14^{th}$ and the planting distance was $30{\times}12cm$. The field experiment was conducted in the Miryang region (southern plain region of Korea) from 2015 to 2017. Our results suggested that the optimum transplanting dates were from May $17^{th}$ to May $31^{th}$, which resulted in an average yield of 750 kg/10 a. The average grain filling rate before May $31^{th}$ was more than 83% and it declined to 75% after June $7^{th}$. The average temperature range from heading to harvesting time was $21{\sim}25^{\circ}C$ and the estimated optimal temperature was $24^{\circ}C$, which is similar to that of May $24^{th}$ by regression equation. It is suggested that low temperature at seed maturation time caused the lower grain filling rate, and therefore 'Saemimyeon' needed to be transplanted before May $31^{th}$ for higher productivity. Estimated optimal transplanting time based on temperature was 1 ~ 2 weeks earlier than the optimum transplanting time for common japonica rice cultivars in Youngnam Province.

Growth of Rice Plant and Salinity under Different Flooding Times and Days to Transplanting after Submerged Rotary in Saline Paddy (우척답에서 정지후 환수회수와 이앙시기에 따른 염분농도와 수도생육)

  • 정진일;유숙종
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.5
    • /
    • pp.398-404
    • /
    • 1993
  • This study was conducted in order to obtain the information for yield improvement in saline paddy. Saline concentration, growth and yield of rice, being subjected to different flooding times and days to transplanting were investigated in saline paddy with 0.35 % and 0.5 % salt concentration. Saline concentration of soil was increased to 0.41 % just after rotary in the paddy with 0.35 % salinity, but decreased to 0.20 % after 3 to 4 times of flooding treatment. And also that of surface water was decreased from 0.2 % to 0.11 %. Saline concentration of soil in 5cm depth was decreased to 0.31 % by one time flooding and to 0.22% by 3~4 times flooding but salinity below 7cm depth showed slight decrease. Seedling death was exceeded 37 % when transplanted one day after rotary in the paddy with 0.35% salinity. Death ratio was decreased to 20% by three times flooding and transplanting six days after rotary. In paddy with 0.5 % salinity, death ratio was high but the tendency was very similar to 0.35 % field. In 0.35 % saline paddy field, yields were increased by 14 % by three times flooding and transplanting six days after rotary as compared to one time flooding and transplanting are day after rotary. Therefore, 3 to 4 times flooding and transplanting 5 to 6 days after rotary are desirable in high saline paddy.

  • PDF

Studies on the Behavior of Phosphorus under the Conditions of Transplanting and Direct-sowing Culture in Rice Plants (수도(水稻)의 직파(直播) 및 이식재배(移植栽培) 조건하(條件下)의 인산(燐酸) 소장(消長)에 대(對)하여)

  • Ahn, Hak-Soo
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.185-188
    • /
    • 1969
  • This experiment was carried out to investigate on the growth, yield behavior of phosphorus at different stage of growth under the different cultivating conditions in rice plants. The results obtained were as follows; 1) The phosphorous contents was increased in the direct-sowing plots of the rooting time and the early stage of tillering, while in the middle and the later stage of growth, the transplanting plots was increased. 2) In the moisture contents, the direct-sowing plots was more increased than the transplanting plot in the rooting time and the early stage of tillering, while in the later stage of growth, the transplanting plots was increased. 3) The plant height and the weight of dry matter were also increased in the direct-sowing plots of the early stage of tillering, on the other hand, after that the transplanting plots was increased. 4) In the yield of grain, the transplanting plots was increased about 15% compared with the direct-sowing plots.

  • PDF

Growth Characteristics of Angelica gigas Nakai on Transplantation Season (April and Autumn) (정식계절(봄, 가을)에 따른 참당귀(Angelica gigas Nakai)의 생장특성)

  • Jeong, Dae Hui;Kim, Nam Soo;Kim, Ki Yoon;Park, Hong Woo;Jung, Chung Ryul;Kim, Hyun-Jun;Jeon, Kwon Seok;Kim, Mahn Jo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.72-72
    • /
    • 2019
  • This study compared the growth characteristics of A. gigas according to the transplanting season, in the cultivation located in Yeongju, Gyeongsangbuk-do, transplanted in the autumn and spring. As a result of that the plant survival rate were observed the highest autumn transplanting (9.4%; autumn-92.2%, spring-82.8%) and bolting rate were observed lowest spring transplanting (7.1%; autumn-37.3%, spring-30.2%). Growth characteristics (height, leaf length and width, stem diameter) were observed the highest autumn transplanting in June and highest spring transplanting in August. The early growth is high growth due to long rooting time in autumn transplanting, but the difference in the ground growth between the two experiments was insignificant when the main growth period was from June to August. Further analysis of the growth characteristics and marker components of roots of A. gigas can be used to determine the optimal planting time and the establishment of high quality cultivation technology.

  • PDF

Summer Softening Cultured Yield and Its Income of Aralia continentalis Kita. (땅두릅의 여름철 연화재배 수량과 경제성)

  • 김시동
    • Korean Journal of Plant Resources
    • /
    • v.8 no.2
    • /
    • pp.183-188
    • /
    • 1995
  • This experiment was carried out to clarity the effect of summer softening cultivation on bud yield of Aralia continentalis Kita. Bulbous plant harvested on March 25 and stored in low temperature storage room($0-2^{\circ}C$) were transplanted in May, June, July and August. The bulbous plants were grown under black PE film and 50%(T-2250) silver shading nets. The results obtained are summerized as fallows. Harvesting time in Jul. and Aug. transplanting was 15days and was speeling 5days in May transplanting. The accumulative temperature of whole growth period was about $400^{\circ}C$. But yield of soft stems in June transplanting was 6.64(ton/ha), which was more than others. High temperature induced low-quality of soft stem in transplanting in July. Net income was 18000(1000won/ha) in transplanting in May or June.

  • PDF

Recent Development in Rice Seedling Raising in Japan, with Special Reference to the "Nursling Seedlings"

  • Kiyochika, Hoshikawa
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.2
    • /
    • pp.198-208
    • /
    • 1992
  • Recently, a nursery mat made from rock wool has realized transplanting of the younger seedlings with the ordinary transplanting machines for Chibyo and Chubyo(3 and 4~5 leaved seedling, respectively). The seedlings defined as the 'Nyubyo' or 'Nursling seedlings' became possible to achieve economic profits from the reduction in both working time and costs. It being widely noticed as a strategy to solve the difficulties in current rice cultivation. The nursling seedlings are 1.4 to 2.5 leaves and height at 4.5 to 7cm, grown 4 to 7 days after seeding. They maintain still up to 50 to 80% of their nutrients in the endosperm, and can grow by using only their own nutrients for a certain period of time after transplanting. Nursling seedlings take 2 days in the nursery chamber at 32$^{\circ}C$ after seeding, and 2 days in the greening house at $25^{\circ}C$. This is only 4 days, all together, to make the nursling seedlings of 1.5 leaves which are ready for transplanting. Watering is only needed once at the sowing time. It only takes 1 or 2 waterings even to raise a seedlings for a period of 7 days. The number of nursery boxes can be reduced because it is possible to sow more densely(220 to 240g per box), thus it only needs seedlings of 15 to 16 boxes per 10 a which leads to a reduction in facilities and space needed. Temperature during the nursery period can be artificially adjusted more precisely which may lead to the prevention of temperature stress. The nursling seedlings can root rapid by because the crown roots from the coleoptile node begin to emerge immediately after transplanting. They show strong resistance to low temperature (12$^{\circ}C$) and deep-planting. There is no danger in the rooting of the seedlings even if half of their height is buried into the soil. Moreover, it can root at a rate of up to 65 to 80% even if the full height of the seedlings is buried. They show also strong resistance to submergence (10~15cm). The nursling seedlings tend to grow by producing tillers from lower nodes. It is therefore, necessary to control to keep the proper numbers of tillers per unit area. They have no fear in the delay of heading and their yield components can be so well balanced that the same level of yield was achieved with the nursling seedlings compared to that with Chibyo. It was further suggested that if the surplus tillers can be avoided by such cultivation practices, the number of grain per panicle can be kept greater and higher yield can be realized. Practical experiments with the nursling seedlings conducted in 1989 and 1990 by farmers in various areas showed exciting results. The nursling seedlings will become widely spread, or at least occupy an important position in Japanese and also in Korean rice cultivation techniques.tivation techniques.

  • PDF

Variation of rachis branches in rice varieties with different maturing types by various planting times. (벼 작기이동에 따른 조만성별 수상의 착생변이)

  • 심재성
    • Korean Journal of Plant Resources
    • /
    • v.9 no.3
    • /
    • pp.285-290
    • /
    • 1996
  • This experiment was conducted to investigate the variation of adhering primary and secondary rachis branches of panicle in three ecotypes at National Honam Agricultural Experiment Station in 1993. Three ecotypes. Odaebyeo and Sinunbongbyeo as early-maturing type, Cheongmyeongbyeo and Changanbyeo as medium, and Dongjinbyeo and Mangeumbyeo as late-maturing type were used. The treatment were 5 planting times from May 5 to 5 July by 15 day intervals. The number of primary rachis branch in early maturing type recorded high in between May 5 and 20 May as early transplanting. Medium and late-maturing type, however, was found to be have more primary rachis branches at the late time of June 20 transplanting than at the optimum transplanting of Honam area. The number of secondary rachis branch was high between June 5 and 20 June regardless ecotypes. The rate of secondary rachis branch per primary rachis branch was increased with later transplanting time up to June 5, but showed no differences onwards. The number of grain in primary and secondary rachis branches were low in transplanting time of May 5 regardless ecotype but high in late transplanting time by July 5. Densinty of seed sets was found to be higher in late transplanting than in early transplating;early-maturing type showed high in July 5 and 20 June in medium-late maturing type respectively.

  • PDF

Natural Crossing of Flue -cured Tobacco Variety (황색종 연초품종의 자연교잡율)

  • 정윤화;금완수;조명조;이승철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.6
    • /
    • pp.495-508
    • /
    • 1993
  • This experiment was conducted to investigate the amount of natural crossing at varying isolation distance and various transplanting time in tobacco. Normal variety and male sterile line showed an average of 1. 6 and 29% natural crossing in the adjacent plantings, respectively. The natural crossing was highest in the adjacent planting, as expected, and less at the farther distance from pollinator plants. Plants transplanted in April 20th were higher in natural crossing than those of other transplanting time.

  • PDF

Effect of Application Time and Amount of Liquid Pig Manure on Growth of Rice and Infiltration Water Quality (벼에 대한 돈분뇨 액비의 시용량 및 시용시기 구명)

  • Park, Baeg-Kyun;Lee, Jong-Sik;Cho, Nam-Jun;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.147-152
    • /
    • 2001
  • This study was carried out to investigate the effect of application time and amount of liquid pig manure on growth and yield of rice plant and infiltration water quality. Liquid manure treatment with higher application rate and closer application time to transplanting time showed higher plant height and number of tiller at panicle formation stage, but it caused the plant disease and pest and lodging. In liquid manure treatment with higher application rate, number of panicles per hill and number of spikelets per panicle were higher but yield of rice was less than chemical fertilizer treatment due to low rate of ripeness and 1,000 grain weight. $NO_3-N$ concentration in infiltration water sample was increased with increasing application amount of liquid manure and closer application time to transplanting of rice plant. With consideration yield of rice and environment such as groundwater quality, the proper application amount were 150% and 100% of recommending N fertilizer level (11kg) at before winter and April or May treatment, respectively.

  • PDF

The effect of application time of fertilizer nitrogen on its uptake rate and distribution in rice plant (질소(窒素) 시용시기별(施用時期別) 질소흡수율(窒素吸收率)과 수도체내(水稻體內)의 분포(分布)에 관한 연구(硏究))

  • Shim, Sang Chil;Kim, Tai Soon;Song, Ki Joon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.2
    • /
    • pp.113-118
    • /
    • 1974
  • A study was carried out to investigate the effect of application time of fertilizer nitrogen on its rate of uptake and its distribution in rice plant. The rate of applied fertilizer was 100kg/ha, as a single application at transplanting time and four equal split applications of 25kg/ha was applied at transplanting time, 3 weeks after transplanting, 1 week before the primodial initiation stage of growth and at the flag leaf stage of growth, respectively. The ammonium sulfate was labelled with N-15, as 1% atom excess for single application and 4.4% atom excess for split applications. The results are sumarized as follows: 1. The effect of split application of nitrogen on yield was observed. The yield of brown rice of the single application at transplanting time was 3.1 ton/ha and the split application was 3.4 ton/ha. However, without nitrogen the yield was reduced to 1.9 ton/ha. 2. The number of grains per panicle and 1000 grains weight were increased as split application of nitrogen, but for the number of panicles per hill and maturing rate, the single application of nitrogen revealed favorable results. 3. The rate of uptake of applied fertilizer nitrogen showed a tendency that the efficiency of fertilizer nitrogen increased by top dressing. The rate of uptake of applied nitrogen as basal application, first top dressing, second top dressing and third top dressing was 28%, 33% 51% and 63%, respectively. 4. After shooting stage of the growth, nitrogen in straws transfered to grains. The nitrogen applied at flag leaf stage was absorbed by root and easily accumulated in grains rather than straw.

  • PDF