• 제목/요약/키워드: transplant production factory

검색결과 6건 처리시간 0.017초

Growth of Runner Plants Grown in a Plant Factory as Affected by Light Intensity and Container Volume

  • Park, Seon Woo;Kwack, Yurina;Chun, Changhoo
    • 원예과학기술지
    • /
    • 제35권4호
    • /
    • pp.439-445
    • /
    • 2017
  • Transplant production in a plant factory with artificial lighting provides several benefits; (1) rapid and uniform transplant production, (2) high production rate per unit area, and (3) production of disease free transplants production. To improve the growth of runner plants when strawberry transplants are produced in a plant factory, we conducted two experiments to investigate (1) the effect of different light intensity for stock and runner plants on the growth of runner plants, and (2) the effect of different container volume for runner plants on their growth. When the stock and runner plants were grown under nine different light conditions composed of three different light intensities (100, 200, and $400{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPF) for each stock and runner plants, increasing the light intensity for stock plants promoted the growth of runner plants, however, the growth of runner plants was not enhanced by increasing the light intensity for runner plants under same light intensity condition for stock plants. We also cultivated runner plants using plug trays with four different container volumes (21, 34, 73, and 150 mL) for 20 days after placing the stock plants, and found that using plug trays with lager container volume did not enhance the growth of runner plants. These results indicate that providing optimal condition for stock plants, rather than the runner plants, is more important for increasing the growth of the runner plants and that the efficiency of strawberry transplant production in a plant factory can be improved by decreasing light intensity or container volume for runner plants.

DEVELOPMENT OF TRANSPLANT PRODUCTION IN CLOSED SYSTEM (PART II) - Irrigation Scheduling based on Evapotranspiration Rate-

  • Tateishi, M.;Murase, H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.764-769
    • /
    • 2000
  • A new transplant production system that produces high quality plug seedlings of specific crop has been studied. It is a plant factory designed to produce massive amount of virus free seedlings. The design concept for building this plant factory is to realize maximum energy efficiency and minimum initial investment and running cost. The basic production strategy is the sitespecific management. In this case, the management of the growth of individual plantlet is considered. This requires highly automated and information intensive production system in a closed aseptic environment the sterilized specific crops. One of the key components of this sophisticated system is the irrigation system. The conditions that this irrigation system has to satisfy are: 1. to perform the site specific crop management in irrigation and 2. to meet the no waste standard. The objective of this study is to develop an irrigation scheduling that can implement the no waste standard.

  • PDF

A Closed Transplant Production System, A Hybrid of Scaled-up Micropropagation System and Plant Factory

  • Chun, Changhoo;Kozai, Toyoki
    • Journal of Plant Biotechnology
    • /
    • 제3권2호
    • /
    • pp.59-66
    • /
    • 2001
  • Photoautotrophic micropropagation systems do not include sugar in the culture media. This characteristic provides advantages to scale up the micropropagation systems comparing photomixotrophic micropropagation systems. A closed, large-scale photoautotrophic micro-propagation for transplant production system has been developed at Chiba University, Japan. New concepts and technologies were adapted to produce high quality transplants at minimum usage of resources, and as scheduled. Newly developed software for production management was used to enhance the efficiency of the transplant production system. Currently, virus-free transplants of sweetpotato (Ipomoea batatas (L.) Lam.) are vegetatively propagated and produced under sterilized conditions in this system. This system can also be used for production of transplants of any other species including horticultural and woody plants with a minimum of modification.

  • PDF

식물묘공장의 근접조명용 인공광원으로서 형광등의 광강도 및 분광 특성 (Light Intensity and Spectral Characteristics of Fluorescent Lamps as Artificial Light Source for Close illumination in Transplant Production Factory)

  • 김용현;이종호
    • Journal of Biosystems Engineering
    • /
    • 제23권6호
    • /
    • pp.591-598
    • /
    • 1998
  • Light intensity and spectral characteristics of different types of fluorescent lamps were tested to investigate their possibility as the artificial lighting sources for the close illumination applied in the transplant production factory. Photosynthetic photon flux densitiy(PPF), illuminance and irradiance for all lamps decreased logarithmically with an increase of the vertical distance from the lighting source. The fluorescent lamp specially designed plant growth (PG lamp) showed a maximum spectral irradiance at the wavelength of 660nm. However, it showed lower irradiance than that of a standard fluorescent lamp at the range of wavelength between 500 and 600nm. On the other hand, PG lamp showed higher PPF and lower illuminance than those of the standard fluorescent lamp. The maximum peak of spectral characteristics for both of the single and twin three-bind fluorescent lamps was shorn at the wavelength of 545m and the next peaks were shown at the wavelength of 610nm and 435nm, respectively. Since the red fluorescent lamp has a narrower peak at the wavelength of 660nm, it may be useful for the supplementary red lighting. For three of standard, single three-band and twin three-band fluorescent lamps, the values of conversion factor for converting illuminance to PPF fell within the narrow range from 76 to 791x/$\mu$molㆍm$^{-2}$ ㆍs$^{-l}$ . However, for PG lamp, it was 29.71x/$\mu$molㆍm$^{-2}$ ㆍs$^{-1}$. Also, the values of conversion factor for converting PPF to irradiance of fluorescent lamp used in this study ranged between 4.85 and 5.34$\mu$molㆍm$^{-2}$ ㆍs$^{-1}$/Wㆍm$^{-2}$ .

  • PDF

인공광하의 풍동내에서 기류속도가 가지 플러그묘의 생장에 미치는 영향 (Effects or air current speeds on the growth or eggplant plug seedlings in a wind tunnel under artificial lighting)

  • 김용현
    • 생물환경조절학회지
    • /
    • 제7권1호
    • /
    • pp.9-14
    • /
    • 1998
  • 본 연구에서는 인공광하의 풍동내에서 기류속도와 생육실내의 위치가 플러그묘 개체군의 생장에 미치는 효과를 분석하였다 기류속도가 증가하면 모개체군내에서의 상대습도는 감소하나, 포차는 증가한다. 이에 따라 증산이 활발하게 이루어져 잎에서의 수분포텐셜이 저하되며 묘개체군 위에서 공기역학적 저항이 감소함에 따라 확산계수가 높게 나타난다. 그 결과로서 0.93m.s$^{-1}$의 기류속도에서 줄기 길이, 줄기직경에 대한 줄기 길이의 비, 초장, 엽수는 유의성이 인정될 만큼 작게 나타났다. 묘개체군의 순광합성속도는 기류속도의 증가와 함께 증가되면서 0.7~0.9 m.s$^{-1}$에서 높게 나타났다. 생육실내의 위치 즉 기류의 진행방향을 따라 줄기 직경과 지하부 건물 중은 감소하였으나, 줄기 직경에 대한 줄기 길이의 비와 엽면적은 증가하는 것으로 나타났다. 이밖에 플러그묘의 생체중 또는 건물 중에 대한 T/R비는 기류속도의 변화와 무관하게 각각 2.8~3.5, 3.2~3.9로서 비슷하게 나타났으나, 건물율은 지상부에서 8.1~9.4, 지하부에서 10.1~10.9로서 지하부에서 다소 높게 나타났다. 그러므로 기류속도의 크기와 기류의 진행방향에 따라 묘개체군 위에서의 확산계수가 다르게 나타나며 이로 인하여 모개체군의 생장 차이가 나타남을 알 수 있다. 따라서 식물모공장과 같이 인공광을 이용한 반폐쇄 식물생산 시스템에서 품질이 균일한 모를 생산하려면 묘개체군의 미기상에 기초한 적정 환경조건의 확립이 요구된다.

  • PDF