• Title/Summary/Keyword: transplant production factory

Search Result 6, Processing Time 0.027 seconds

Growth of Runner Plants Grown in a Plant Factory as Affected by Light Intensity and Container Volume

  • Park, Seon Woo;Kwack, Yurina;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.439-445
    • /
    • 2017
  • Transplant production in a plant factory with artificial lighting provides several benefits; (1) rapid and uniform transplant production, (2) high production rate per unit area, and (3) production of disease free transplants production. To improve the growth of runner plants when strawberry transplants are produced in a plant factory, we conducted two experiments to investigate (1) the effect of different light intensity for stock and runner plants on the growth of runner plants, and (2) the effect of different container volume for runner plants on their growth. When the stock and runner plants were grown under nine different light conditions composed of three different light intensities (100, 200, and $400{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPF) for each stock and runner plants, increasing the light intensity for stock plants promoted the growth of runner plants, however, the growth of runner plants was not enhanced by increasing the light intensity for runner plants under same light intensity condition for stock plants. We also cultivated runner plants using plug trays with four different container volumes (21, 34, 73, and 150 mL) for 20 days after placing the stock plants, and found that using plug trays with lager container volume did not enhance the growth of runner plants. These results indicate that providing optimal condition for stock plants, rather than the runner plants, is more important for increasing the growth of the runner plants and that the efficiency of strawberry transplant production in a plant factory can be improved by decreasing light intensity or container volume for runner plants.

DEVELOPMENT OF TRANSPLANT PRODUCTION IN CLOSED SYSTEM (PART II) - Irrigation Scheduling based on Evapotranspiration Rate-

  • Tateishi, M.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.764-769
    • /
    • 2000
  • A new transplant production system that produces high quality plug seedlings of specific crop has been studied. It is a plant factory designed to produce massive amount of virus free seedlings. The design concept for building this plant factory is to realize maximum energy efficiency and minimum initial investment and running cost. The basic production strategy is the sitespecific management. In this case, the management of the growth of individual plantlet is considered. This requires highly automated and information intensive production system in a closed aseptic environment the sterilized specific crops. One of the key components of this sophisticated system is the irrigation system. The conditions that this irrigation system has to satisfy are: 1. to perform the site specific crop management in irrigation and 2. to meet the no waste standard. The objective of this study is to develop an irrigation scheduling that can implement the no waste standard.

  • PDF

A Closed Transplant Production System, A Hybrid of Scaled-up Micropropagation System and Plant Factory

  • Chun, Changhoo;Kozai, Toyoki
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.59-66
    • /
    • 2001
  • Photoautotrophic micropropagation systems do not include sugar in the culture media. This characteristic provides advantages to scale up the micropropagation systems comparing photomixotrophic micropropagation systems. A closed, large-scale photoautotrophic micro-propagation for transplant production system has been developed at Chiba University, Japan. New concepts and technologies were adapted to produce high quality transplants at minimum usage of resources, and as scheduled. Newly developed software for production management was used to enhance the efficiency of the transplant production system. Currently, virus-free transplants of sweetpotato (Ipomoea batatas (L.) Lam.) are vegetatively propagated and produced under sterilized conditions in this system. This system can also be used for production of transplants of any other species including horticultural and woody plants with a minimum of modification.

  • PDF

Light Intensity and Spectral Characteristics of Fluorescent Lamps as Artificial Light Source for Close illumination in Transplant Production Factory (식물묘공장의 근접조명용 인공광원으로서 형광등의 광강도 및 분광 특성)

  • 김용현;이종호
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.591-598
    • /
    • 1998
  • Light intensity and spectral characteristics of different types of fluorescent lamps were tested to investigate their possibility as the artificial lighting sources for the close illumination applied in the transplant production factory. Photosynthetic photon flux densitiy(PPF), illuminance and irradiance for all lamps decreased logarithmically with an increase of the vertical distance from the lighting source. The fluorescent lamp specially designed plant growth (PG lamp) showed a maximum spectral irradiance at the wavelength of 660nm. However, it showed lower irradiance than that of a standard fluorescent lamp at the range of wavelength between 500 and 600nm. On the other hand, PG lamp showed higher PPF and lower illuminance than those of the standard fluorescent lamp. The maximum peak of spectral characteristics for both of the single and twin three-bind fluorescent lamps was shorn at the wavelength of 545m and the next peaks were shown at the wavelength of 610nm and 435nm, respectively. Since the red fluorescent lamp has a narrower peak at the wavelength of 660nm, it may be useful for the supplementary red lighting. For three of standard, single three-band and twin three-band fluorescent lamps, the values of conversion factor for converting illuminance to PPF fell within the narrow range from 76 to 791x/$\mu$molㆍm$^{-2}$ ㆍs$^{-l}$ . However, for PG lamp, it was 29.71x/$\mu$molㆍm$^{-2}$ ㆍs$^{-1}$. Also, the values of conversion factor for converting PPF to irradiance of fluorescent lamp used in this study ranged between 4.85 and 5.34$\mu$molㆍm$^{-2}$ ㆍs$^{-1}$/Wㆍm$^{-2}$ .

  • PDF

Effects or air current speeds on the growth or eggplant plug seedlings in a wind tunnel under artificial lighting (인공광하의 풍동내에서 기류속도가 가지 플러그묘의 생장에 미치는 영향)

  • 김용현
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 1998
  • Air current speeds were controlled of 0.3, 0.5, 0.7 and 0.9 m.s$^{-1}$ to investigate the effects of air current speeds on the growth of eggplant plug seedlings (Solanum melongena L.) in a wind tunnel under artificial lighting. Growth of plug seedlings was influenced by the magnitude of air current speed and the traveling distance of regulated air flow. Stem length. ratio of length to diameter in stem, plant height .and number of leaves of plug seedlings decreased with the increasing air current speed and were significantly different at 5% level. Net photosynthetic rates of plug stand increased with the increasing air current speed and took a maximum value at the air current speed of 0.7~09 m.s$^{-1}$ . Stem diameter decreased and leaf area increased with the traveling distance of regulated air flow. Fresh weight and T/R ratio of dried weight were not influenced by the air current speed. Optimum control for microclimates inside the plug stand is needed to produce the uniform growth and high quality of plug seedlings in a semi-closed plant Production system under artificial lighting.

  • PDF