• Title/Summary/Keyword: transpiration.

Search Result 394, Processing Time 0.361 seconds

Engineering characteristics and eco-cultural potential of spring in Jeju Island

  • Koh, Byoung Ryoun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.218-218
    • /
    • 2019
  • Jeju island has an area of $1,810km^2$ and is considered the largest island in South Korea. In Jeju Island the average annual precipitation is 1,957mm. About 54% of precipitation is estimated to be lost due to evapo-transpiration and direct runoff, and the remainder is recharged. Historically springs and puddles were the island's primary sources of water. However, after 1970 all sectors, including the urban and industrial sectors depended solely on groundwater as their water resource. As vast amount of water is being recharged the Island has many springs, especially near the coastlines. Historlcally, spring of Jeju Island formed village and make it possible to continue a life. Also it produces many values such as the spring related story, culture, tourism and ecosystems. Especially, the naturally rare phenomenon that about 900 springs appear over the whole area of Jeju Island makes it possible to call it as a natural heritage. As a result of this most springs have either been destroyed or been in the state of neglect. In some cases it has been observed that springs were preserved by nature, however majority of the cases saw springs losing their own nature as a result of abandonment. It was recorded that there were 911 springs in Jeju Island with most of them being distributed along the coast, which consequently increases their susceptibility to seawater intrusion. The objective of this study is therefore to analyze Eco-cultural and Engineering characteristics about springs in the island, highlighting its past utilization and reestablishing its potential as a source of spring.

  • PDF

Studies of Physiological Action of Chemicals to Increase in Ripening of Rice Plant II. Investigation of Chemical Effect and Ripeness of Rice Plant (수도등숙 향상을 위한 생리생태연구 제2보 ABA 및 BA처리가 수도등숙에 미치는 영향에 대하여)

  • Seo, G.S.;Lee, J.Y.;Kim, S.Y.;Ota,Yasuo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.2
    • /
    • pp.189-194
    • /
    • 1983
  • The experiment was carried out to know the ripeness effect of Gemgang when ABA and BA were sprayed at the heading stage. ABA promoted the stomatal movement, BA kept plant from senescence. Percent of filled grain, grain weight, photosynthesis, content of chlorophyll, transpiration and content of ATP were measured at 1-week interval from 2-weeks after heading.

  • PDF

Effect of Elevated CO2 and Temperature on Growth, Yield and Physiological Responses of Major Rice Cultivars by Region in South Korea

  • Hae-Ran Kim;Young-Han You;Heon-Mo Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.341-351
    • /
    • 2022
  • The physiological characteristics, growth, and yield of each regional rice variety ('Odaebyeo', 'Saechucheong', 'Ilmibyeo') were investigated depending on the impact of changes in temperature and CO2 concentration. Experiments were conducted with a control group, which reflected atmospheric CO2 concentration and temperature, and treatment groups, in which the CO2 concentration and temperature were increased by 250 ppm and 2.0℃ from those in the control group. The results showed that the increase in CO2 concentration and temperature reduced the growth and yield of the rice 'Odaebyeo', but did not substantially change the productivity of the 'Saechucheong' and 'Ilmibyeo'. The increase in CO2 concentration and temperature increased stomatal conductance and rate of transpiration of the 'Odaebyeo' variety, thereby decreasing its water use efficiency (WUE). In contrast, the increase in CO2 concentration and temperature increased the photosynthetic rate and WUE of the 'Saechucheong' and 'Ilmibyeo' varieties. The gradual change in climate is considered to directly affect growth and development of rice and diversely affect the productivity of each variety. Therefore, it is necessary to implement technological development, select regionally optimal rice varieties, develop new rice varieties, as well as conduct long-term monitoring of each rice variety for climate adaptation to counter global warming.

Photosynthetical Responses in the leaves of Allium ochotense and Allium microdictyon (오대산과 울릉도 산마늘의 광합성 특성)

  • Han, Sang-Sup;Kim, Ha-Sun;Lee, Kyeong-Cheol
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.3
    • /
    • pp.203-208
    • /
    • 2010
  • This study was conducted to investigate the net photosynthetic rate, stomatal transpiration, stomatal conductance, water use efficience, and intercellular $CO_2$ concentration in Allium ochotense leaves and Allium microdictyon leaves. The light compensation point was 4.2 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ in Allium ochotense leaves and 5.2 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ in Allium microdictyon leaves. The lght saturation point was approximately 800 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ in between Allium ochotense leaves and Allium microdictyon leaves. The phtosynthetic rate of Allium ochotense leaves was higer than that of Allium microdictyon leaves. On the other hand, at more than $30^{\circ}C$, it appeared that the values of net photosynthetic rates of Allium microdictyon leaves were higher than that of Allium ochotense leaves. These results suggest that growth of those Allium ochotense plants are appropriate for relatively cool temperature site compared to Allium microdictyon plants.

Single-trait GWAS of Leaf Rolling Index with the Korean Rice Germplasm

  • ByeongYong Jeong;Muhyun Kim;Tae-Ho Ham;Seong-Gyu Jang;Ah-Rim Lee;Min young Song;Soon-Wook Kwon;Joohyun Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.17-17
    • /
    • 2022
  • Leaves are an important organism for photosynthesis and transpiration. The shape of leaf is crucial factor affecting plant architecture. V-shape leaf rolling is enhancing canopy photosynthesis by increasing the CO2 penetration and the light capture by reducing the shadow between the leaves. Therefore, moderate leaf rolling is thought to more high grain yield per area than flat leaf. We investigated 278 KRICE_CORE accession's Adaxial Leaf Rolling Index (LRI) in first heading using the following equation. For each accession, genomic DNA was used for sequencing. We sequenced the genomics with ~8 X coverage to detect SNPS. Raw reads were aligned against the rice reference (IRGSP 1.0) for SNP identification and genotype calling. To generate genotype data for GWAS, SNPs were filtered with minor allele frequency 0.05. Finally, 841,134 high-quality SNPs were used for our GWAS. The significant threshold was -log10(P)>7.23. From the results, 2 significance SNP were detected. Considering the LD block of 250kbp, 60 candidate gene were selected including Hypothetical gene and Conserved gene. In this poster, we analyzed candidate gene affecting adaxial Leaf Rolling through single-trait GWAS.

  • PDF

Single-trait GWAS of Leaf Rolling Index with the Korean Rice Germplasm

  • ByeongYong Jeong;Muhyun Kim;Tae-Ho Ham;Seong-Gyu Jang;Ah-Rim Lee;Min young Song;Soon-Wook Kwon;Joohyun Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.243-243
    • /
    • 2022
  • Leaves are an important organism for photosynthesis and transpiration. The shape of leaf is crucial factor affecting plant architecture. V-shape leaf rolling is enhancing canopy photosynthesis by increasing the CO2 penetration and the light capture by reducing the shadow between the leaves. Therefore, moderate leaf rolling is thought to more high grain yield per area than flat leaf. We investigated 278 KRICE CORE accession's Adaxial Leaf Rolling Index (LRI) in first heading using the following equation. For each accession, genomic DNA was used for sequencing. We sequenced the genomics with ~8 X coverage to detect SNPS. Raw reads were aligned against the rice reference (IRGSP 1.0) for SNP identification and genotype calling. To generate genotype data for GWAS, SNPs were filtered with minor allele frequency 0.05. Finally, 841,134 high-quality SNPs were used for our GWAS. The significant threshold was -log10(P) >7.23. From the results, 2 significance SNP were detected. Considering the LD block of 250kbp, 60 candidate gene were selected including Hypothetical gene and Conserved gene. In this poster, we analyzed candidate gene affecting adaxial Leaf Rolling through single-trait GWAS.

  • PDF

Effect of Sulfur Dioxide Gas and Abscisic Acid Pretreatment on Physiological Susceptibility and Growth Damages of Coniferous Seedlings (아황산(亞黃酸)가스 및 ABA 전처리(前處理)가 침엽수(針葉樹) 유묘(幼苗)의 생장피해(生長被害)와 생리적(生理的) 감수성(感受性)에 미치는 영향(影響))

  • Lee, Im Kyun;Kim, Young Chai
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.331-343
    • /
    • 1994
  • This study was conducted to find out the effect of $SO_2$ gas on growth of tree species and the effect of pretreatment of ABA to Pinus koraiensis. Abies holophylla and Taeus cuspidata on the susceptibility for $SO_2$ gas damage. The survey was carried out on the water contents of leaf and shoot, and the acidities of bark and leaf, and the chlorophyll and water soluble sulfur contents, and the changes of transpiration rates on selected seedlings exposed to $SO_2$ gas at seven levels : 0ppm, 0.5ppm, 1ppm, 2ppm, 4ppm, 26.4ppm ABA, 56.8ppm ABA. The results obtained from this research are as follows : 1. The water contents of leaf and shoot of the three tree species decreased with increasing concentrations of $SO_2$ gas and the relative susceptibility of Abies holophylla was larger than those of Taxus cuspidata and Pinus koraiensis because moisture diminution rates were higher in leaves and shoots of Abies holophylla than those of other species. 2. The acidities of bark and leaf of the three tree species increased with increasing concentrations of $SO_2$ gas. The relative susceptibility of Pinus koraiensis in bark acidity was larger than those of Abies holopfaylla and Toxus cuspidata. Abies holophylla was more susceptive than Pinus koraiensis and Taxus cuspidata. 3. Water soluble sulfur contents of the three tree species increased with increasing concentration of $SO_2$ gas. The relative susceptibility of Taxus cuspidata in water soluble sulfur contents was lager than those of Pinus koraiensis and Abies holophylla. 4. Leaf chlorophyll contents of the three tree species decreased with increasing concentrations of $SO_2$ gas. The order of the relative susceptibility in leaf chlorophyll contents was Taxus cuspidata, Abies holophylla and Pinus koraiensis. 5. Correlation coefficients among the measurement were highly significant for $SO_2$ treatment in all three tree species. 6. The transpiration rates of Abies holophylla and Taxus cuspidata did not change until up to 220 minutes after initiation of $SO_2$ gas fumigation, and changed a little during the time between 220 minutes and 270 minutes. On the other hand, Pinus koraiensis continued to change in transpiration rates little by little from the start of $SO_2$ gas treatment up to 270 minutes, meaning that Pinus koraiensis is less sensitive to ABA. 7. When 2ppm of $SO_2$ was treated. ABA pretreatment effect was detected on the six measurement parameters. ABA affected the resistance of plants by inducing stomata closure. 8. The order of relative susceptibility of the three tree species to $SO_2$ gas fumigation was Abies holophylla, Taxus cuspidata and Pinus koraiensis. Pinus koraiensis was more resistant to $SO_2$ gas than Abies holophylla and Taxus cuspidata.

  • PDF

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method (인공위성 데이터 기반의 공간 증발산 산정 및 에디 공분산 기법에 의한 플럭스 타워 자료 검증)

  • Sur, Chan-Yang;Han, Seung-Jae;Lee, Jung-Hoon;Choi, Min-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.435-448
    • /
    • 2012
  • Evapotranspiration (ET) including evaporation from a land surface and transpiration from photosynthesis of vegetation is a sensitive hydrological factor with outer circumstances. Though both direct measurements with an evaporation pan and a lysimeter, and empirical methods using eddy covariance technique and the Bowen ratio have been widely used to observe ET accurately, they have a limitation that the observation can stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral sensor mounted on Terra satellite. We improved to evapotranspiration model based on remote sensing (Mu et al., 2007) and estimated Penman-Monteith evapotranspiration considering regional characteristics of Korea that was using only MODIS product. We validated evapotranspiration of Sulma (SMK)/Cheongmi (CFK) flux tower observation and calculation. The results showed high correlation coefficient as 0.69 and 0.74.

대기의 오존에 의한 스트로브 잔나무 잎의 가스교환과 아스코르브산, 글루타치온의 농도 변화

  • 이웅상
    • The Korean Journal of Ecology
    • /
    • v.16 no.4
    • /
    • pp.397-408
    • /
    • 1993
  • Gas exchange rates and concentrations of ascorbate and glutathlone were measured in needles of eastern white pine(Pinus strohltr) trees differing in foliar sensitivity to ambient oxidant pollution during a ten month period beginning in mid-June, 1988. Current-year needle dry mass and length was 60 to 75% and 45 to 60% less, respectively, in sens~tive trees than in a tolerant tree. Net photosynthesis ($P_n$) and needle conductance ($g_n$) were greatest in the tolerant individual through late September when the rates begin to decline In trees. Needle transpiration rates showed a trend similar to $P_n$ and $g_n$. Ascorbate and total glutathione concentrations in current-year needles increased through the summer and fall, reached a maximum in mid-winter, and then decreased in the spring. Consistently throughout the year, ascorbate concentration was highest in the tolerant tree until the initial springtime decline began in April. The difference In needle ascorbate between the tolerant and sensitive individuals was greater in the summer months (25 to 30%) than in the winter months (8 to 19%). Glutathione content was similar, as was the ratio or oxidized /reduced glutathione, in both tolerant and sensitive trees.

  • PDF

Study on the Salt Tolerance of Rice and Other Crops in Reclaimed Soil Areas 12. On the Salt Tolerance of the Rice Seeldings Grown under the Land and Water Conditions in the Reclaimed Salty Areas (간척지에서 수도 및 기타작물의 내염성에 관한 연구 12. 육묘와 수묘의 염분간척지에서의 내염성에 관하여)

  • 임형빈
    • Journal of Plant Biology
    • /
    • v.13 no.4
    • /
    • pp.23-31
    • /
    • 1970
  • The rice variety, Kwanok, was reared in the water and land beds and transplanted to the reclaimed soil area, having an average salt concentration of 0.39%. Two levels of the moderate and late season cultures with 4 treatments were used. The K and Si contents of the stem part of land bed seedlings were somewhat smaller, but total carbohydrate remarkably larger, the C/N ratio was accordingly greater than water bed seedlings. The rooting ability of land bed seedlings was vigorous markedly in culture solutions, to which added various concentrations of NaCl, The rooting ability of each seedling water not much declined in theculturing solution of up to 9.4mmhos/cm, (0.6%) of salt concentration, but it was drastically declined in the salt concentration over that. It seemed that the critical salt concentration for the rooting rice plant. The land bed seedlings in each salty condition markedly decreased compared with the water bed seeldings in transpiration rate and it showed a stronger drought resistance and contained a large amount of chlorophyll at transplanting stage, and also showed higher stability of chlorophyll at rooting stage in the salt treatment. The number of panicles, panicle weight, number of grains per panicle and ratio of matured grains of the rice plant grown by the land bed seedlings were much greater and 1,000 grain weight was less than from water bed seedlings. The cultural practices with the land bed seedlings increased the rough rice yields by 15% and 11%, respectively, compared with the yields of the moderate and late season cultures by water bed seedlings.

  • PDF