• Title/Summary/Keyword: transphosphorylation

Search Result 5, Processing Time 0.018 seconds

Analysis of Phosphorylation of the BRI1/BAK1 Complex in Arabidopsis Reveals Amino Acid Residues Critical for Receptor Formation and Activation of BR Signaling

  • Yun, Hye Sup;Bae, Young Hee;Lee, Yun Ji;Chang, Soo Chul;Kim, Seong-Ki;Li, Jianming;Nam, Kyoung Hee
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.183-190
    • /
    • 2009
  • The plasma membrane-localized BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED KINASE1 (BAK1) are a well-known receptor pair involved in brassinosteroids (BR) signaling in Arabidposis. The formation of a receptor complex in response to BRs and the subsequent activation of cytoplasmic domain kinase activity share mechanistic characteristics with animal receptor kinases. Here, we demonstrate that BRI1 and BAK1 are BR-dependently phosphorylated, and that phosphorylated forms of the two proteins persist for different lengths of time. Mutations of either protein abolished phosphorylation of the counterpart protein, implying transphosphorylation of the receptor kinases. To investigate the specific amino acids critical for formation of the receptor complex and activation of BAK1 kinase activity, we expressed several versions of BAK1 in yeast and plants. L32E and L46E substitutions resulted in a loss of binding of BAK1 to BRI1, and threonine T455 was essential for the kinase activity of BAK1 in yeast. Transgenic bri1 mutant plants overexpressing BAK1(L46E) displayed reduced apical dominance and seed development. In addition, transgenic wild type plants overexpressing BAK1(T455A) lost the phosphorylation activity normally exhibited in response to BL, leading to semi-dwarfism. These results suggest that BAK1 is a critical component regulating the duration of BR efficacy, even though it cannot directly bind BRs in plants.

Update on Phosphorylation-Mediated Brassinosteroid Signaling Pathways (단백질 인산화에 의해 매개되는 브라시노스테로이드 신호전달 연구의 최근 상황)

  • Lee, Yew;Kim, Soo-Hwan
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.428-436
    • /
    • 2012
  • Protein phosphorylation is a universal mechanism that regulates cellular activities. The brassinosteroid (BR) signal transduction pathway is a relay of phosphorylation and dephosphorylation cascades. It starts with the BR-induced activation of the membrane receptor kinase brassinosteroid insensitive 1 (BRI1), resulting in the dephosphorylation of transcription factors such as BZR1/BES2 and BZR2/BES1 followed by BR-induced gene expression. Brassinosteroid signal transduction research has progressed rapidly by identifying the phosphorylation/dephosphorylation site(s) of the BR-regulated kinase and phosphatase substrates with a simultaneous pursuit of mutant phenotypes. Autophosphorylation, transphosphorylation, and serine/threonine and tyrosine phosphorylation of the receptor protein kinases BRI1 and BRI1-associated kinase (BAK1) have increased the understanding of the regulatory role of those kinases during physiological and developmental processes in plants. The phosphorylation event initiated by BR is also found in the regulation of receptor-mediated endocytosis and the subsequent degradation of the receptor. However, the basic molecular links of the BR signal transduction pathway are not well understood regarding this phosphorylation/dephosphorylation event. This review summarizes the current state of BR signal transduction research to uncover the phosphorylation/dephosphorylation networks and suggests directions for future research on steroid signal transduction to gain a more comprehensive understanding of the process.

Modulation of ATP-Induced Activation of the Muscarinic $K^+$ Channel Activity by Protein Kinase C

  • Kim, Yang-Mi;Park, Hong-Ki;Han, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.743-752
    • /
    • 1998
  • The atrial acetylcholine-activated $K^+\;(K_{ACh})$ channel is gated by the pertussis toxin-sensitive inhibitory G $(G_K)$ protein. Earlier studies revealed that ATP alone can activate the $K_{ACh}$ channel via transphosphorylation mediated by nucleoside-diphosphate kinase (NDPK) in atrial cells of rabbit and guinea pig. This channel can be activated by various agonists and also modulated its function by phosphorylation. ATP-induced $K_{ACh}$ channel activation (AIKA) was maintained in the presence of the NDPK inhibitor, suggesting the existence of a mechanism other than NDPK-mediated process. Here we hypothesized the phosphorylation process as another mechanism underlying AIKA and was undertaken to examine what kinase is involved in atrial cells isolated from the rat heart. Single application of 1 mM ATP gradually increased the activity of $K_{ACh}$ channels and reached its maximum $40{\sim}50$ sec later following adding ATP. AIKA was not completely reduced but maintained by half even in the presence of NDPK inhibitor. Neither ADP nor a non-hydrolyzable ATP analogue, AMP-PNP can cause AIKA, while a non-specific phosphatase, alkaline phosphatase blocked completely AIKA. PKC antagonists such as sphingosine or tamoxifen, completely blocked AIKA, whereas PKC catalytic domain increased AIKA. Taken together, it is suggested that the PKC-mediated phosphorylation is partly involved in AIKA.

  • PDF

Phosphorylation Properties of Recombinant OsCPK11, a Calcium-dependent Protein Kinase from Rice (벼의 칼슘-의존적 단백질 카이네즈인 재조합 OsCPK11의 인산화 특성)

  • Cho, Il-Sang;Lee, Su-Hee;Park, Chung-Mo;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1393-1402
    • /
    • 2017
  • In plants, calcium ($Ca^{2+}$)-dependent protein kinases (CDPKs) are important sensors of $Ca^{2+}$ signals. Previous research demonstrated the expression of the OsCPK11 gene in various tissues at the transcription level, but its developmental and biochemical functions at the protein level were not determined. This study was aimed to identify biochemical characteristics of OsCPK11. GST- OsCPK11 was expressed in E. coli and used for an in vitro kinase assay. Biochemical analyses identified OsCPK11 as a CDPK. OsCPK11 autophosphorylated itself and transphosphorylated histone III-s and MBP as substrates in the presence of $Ca^{2+}$. The activity of the recombinant OsCPK11 was influenced by $Mg^{2+}$, with optimum activity detected at pH 7.0-7.5. OsCPK11 activity was not affected by $Mg^{2+}$, $Mn^{2+}$, or $Na^+$ in the presence of a high level of $Ca^{2+}$. Autophosphorylation of OsCPK11 decreased $Ca^{2+}$ sensitivity of OsCPK11. An anti-OsCPK11 rabbit antibody recognized 95.5 kD of GST-OsCPK11, as shown by an immunoblot analysis. These results shed light on the function of OsCPK11 in $Ca^{2+}$-mediated signaling in rice.

Partial Purification of OsCPK11 from Rice Seedlings and Its Biochemical Characterization (벼 유식물에서 OsCPK11의 부분 정제 및 생화학적 특성 규명)

  • Shin, Jae-Hwa;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Calcium is one of the important secondary signaling molecules in plant cells. Calcium-dependent protein kinases (CDPK)-the sensor proteins of Ca2+ and phosphorylating enzymes-are the most abundant serine/threonine kinases in plant cells. They convert and transmit signals in response to various stimuli, resulting in specific responses in plants. In rice, 31 CDPK gene families have been identified, which are mainly involved in plant growth and development and are known to play roles in response to various stress conditions. However, little is known about the biochemical characteristics of CDPK proteins. In this study, OsCPK11-a CDPK in rice-was partially purified, and its biochemical characteristics were found. Partially purified OsCPK11 from rice seedlings was obtained by three-step column chromatography that involved anion exchange chromatography consisting of DEAE, hydrophobic interaction chromatography consisting of phenyl-Sepharose, and gel filtration chromatography consisting of Sephacryl-200HR. An in vitro kinase assay using partially purified OsCPK11 was also performed. This partially purified OsCPK11 had a molecular weight of 54 kDa and showed a strong hydrophobic interaction with the hydrophobic resin. In vitro kinase assay showed that the OsCPK11 also had Ca2+-dependent autophosphorylation activity. The OsCPK11 phosphorylated histone III-S, and the optimum pH for its kinase activity was found to be 7.5~8.0. The native OsCPK11 shared several biochemical characteristics with recombinant OsCPK11 studied previously, and both had Ca2+-dependent autophosphorylation activity and favored histone III-S as a substrate for kinase activity, which also had a Ca2+-dependence.