• Title/Summary/Keyword: transmittance measurement

Search Result 263, Processing Time 0.026 seconds

Development of CNT Coating Process using Argon Atmospheric Plasma (아르곤 상압플라즈마를 이용한 CNT 코팅 공정 기술 개발)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.33-38
    • /
    • 2022
  • In this paper, a simple method of forming a solution-based carbon nanotube (CNT) for use as a conductive material for electronic devices was studied. The CNT thin film coating was performed on the glass by applying the spin coating method and the argon atmospheric pressure plasma process. In order to observe changes in electrical and physical properties according to the number of coatings, samples formed in the same manner from times 1 to 5 were prepared, and surface shape, reflectance, transmittance, absorbance, and sheet resistance were measured for each sample. As the number of coatings increased, the transmittance decreased, and the reflectance and absorptivity increased in the entire measurement wavelength range. Also, as the wavelength decreases, the transmittance decreases, and the reflectance and absorption increase. In the case of electrical properties, it was confirmed that the conductivity was significantly improved when the second coating was applied. In conclusion, in order to replace CNT with a transparent electrode, it is necessary to consider the number of coatings in consideration of reflectivity and electrical conductivity together, and it can be seen that 2 times is optimal.

Comparison of OC and EC Measurement Results Determined by Thermal-optical Analysis Protocols (열광학적 분석 프로토콜에 의한 유기탄소와 원소탄소 측정값 비교)

  • Kim, Hyosun;Jung, Jinsang;Lee, Jinhong;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.449-460
    • /
    • 2015
  • Carbonaceous aerosol is generally classified into OC (organic carbon) and EC (elemental carbon) by thermal optical analysis. Both NIOSH (National institute of occupational safety and health) with high temperature (HighT) and IMPROVE-A (Interagency monitoring of protected visual environments) with low temperature (LowT) protocols are widely used. In this study, both protocols were applied for ambient $PM_{2.5}$ samples (Daejeon, Korea) in order to underpin differences in OC and EC measurements. An excellent agreement between NIOSH and IMPROVE-A protocol was observed for TC (total carbon). However, significant differences between OC and EC appeared and the differences were larger for EC than OC. The main differences between two protocols are temperature profile and charring correction method. For the same charring correction method, HighT_OC was 10% higher than LowT_ OC, while HighT_EC was 15% and 33% lower than LowT_EC for TOT (thermal-optical transmittance) and TOR (thermal-optical reflectance), respectively. This difference may be caused by the temperature of OC4 in He step and possibly difference in POC (pryorilized OC) formation. For the same temperature profile, OC by TOT was about 26% higher than that by TOR. In contrast, EC by TOT was about 50% lower than that by TOR. POC was also dependent on both temperature profile and the charring correction method, showing much distinctive differences for the charring correction method (i.e., POC by TOT to POC by TOR ratio is about 2). This difference might be caused by different characteristics between transmittance and reflectance for monitoring POC formation within filters. Results from this study showed that OC and EC depends on applied analysis protocol as shown other studies. Because of the nature of the thermal optical analysis, it may not be possible to have an absolute standard analysis protocol that is applicable for any ambient $PM_{2.5}$. Nevertheless, in order to provide consistent measurement results for scientists and policy makers, future studies should focus on developing a harmonized standard analysis protocol that is suitable for a specific air domain and minimizes variations in OC and EC measurement results. In addition, future elaborate studies are required to find and understand the causes of the differences.

A Study on he Optical and Electrical Properties of $In_2O_3-ZnO$ Thin Films Fabricated by Pulsed Laser Deposition (PLD 법으로 제작한 $In_2O_3-ZnO$ 박막의 광학적 및 전기적 특성)

  • Shin, Hyun-Ho;Han, Jung-Woo;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.32-36
    • /
    • 2008
  • In this study, $In_2O_3-ZnO$ thin films are prepared on quartz substrates by the pulsed laser deposition and their optical and electrical properties are investigated as the function of substrate temperatures ($200{\sim}600^{\circ}C$) at the fixed oxygen pressure of 200 mTorr. The XRD measurement shows that polycrystalline $In_2O_3-ZnO$ thin films are formed. In the XRD measurement, the intensity of the (400) $In_2O_3$ peak at $35.5^{\circ}$ decreases and that of the (222) $In_2O_3$ peak at $30.6^{\circ}$ increases with the increase substrate temperature up to $500^{\circ}C$. From the result of AFM measurement, the morphology of $In_2O_3-ZnO$ thin films are observed as round-type grains. The lowest surface roughness (6.15 nm) is obtained for the $In_2O_3-ZnO$ thin film fabricated at $500^{\circ}C$. The optical transmittance of $In_2O_3-ZnO$ thin films are higher than 82% in the visible region. The maximum carrier concentration of $2.46{\times}10^{20}cm^{-3}$ and the minimum resistivity of $1.36{\times}10^{-3}{\Omega}cm$ are obtained also for the $In_2O_3-ZnO$ thin film fabricated at $500^{\circ}C$.

Comparision of Spray Angles of Pintle-Type Gasoline Injector with Different Measuring Methods (측정방법에 따른 핀틀형 가솔린 인젝터의 분무각 비교)

  • Kim, K.J.;Rhim, J.H.;No, S.Y.;Moon, B.S.;Kim, J.Y.;Kang, K.G.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.9-16
    • /
    • 1999
  • Spray angle, a parameter which is most commonly used to evaluate. spray distribution, is important because it affects the axial and radial distribution of the fuel. Spray angles were measured and compared for the pintle-type gasoline fuel injector with n-heptane as a test fuel with the three different measuring techniques, i.e. digital image processing, shadowgraphy and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35MPa into the room temperature and atmospheric pressure environment. In digital image processing method, the transmittance level greatly influences the spray angle with the axial distance from the injector. From the experimental results by the shadowgraphy technique, it is obvious that the spray angle vary during the injection period. The results of spray angle from the spray patternator show that there exist the different spray angles in the different areas. The spray angles increase with the increase in the injection pressure for the three measurement techniques considered in this study. The spray angle is widely different, especially in the near region from the injector, according to the measurement techniques used in this experimental work.

  • PDF

A Study on the Fabrication and Characteristics of ITO thin Film Deposited by the Ionized Cluster Beam Deposition (Ionized Cluster Beam 증착방법을 이용한 Indium-Tin-Oxide(ITO) 박막의 제작과 그 특성에 관한 연구)

  • 최성창;황보상우;조만호;김남영;홍창의;이덕형;심태언;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.54-61
    • /
    • 1996
  • Indium-tin oxide (ITO) films were deposited on the glass substrate by the reactive -ionized cluster beam deposition(ICBD) method. In the oxygen atmosphere, indium cluster formed through the nozzle is ionized by the electron bombardment and is accelerated to be deposited on the substrate. And tin is simultaneoulsy evaporated from the boron-nitride crucible. The chracteristics of films were examined by the X-ray photoelectron spectroscopy(XPS), glancing angle X-ray diffractrion(GXRD) and the electrical properties. were measured by 4-point-probe and Hall effect measurement system . From the XPS spectrum , it was found that indium and tin atoms combined with the oxygen to form oxide$(In_2O_3, SnO_2)$. In the case of films with high tin-concentration, the GXRD spectra show that the main $In_2O_3$ peak of (222) plane, but also sub peaks((440) peak etc.) and $SnO_2$ peaks were detected. From that results, itis concluded that the heavily dopped tin component (more than 14 at. %) disturbs to form $In_2O_3$(222) phase. Four-point-probe and Hall effect measurement show that, in the most desirable case, the transmittance of the films is more then 90% in visible range and its resistivity is $$\rho$=3.55 \times10^{-4}\Omega$cm and its mobility is $\mu$=42.8 $\textrm{cm}^2$/Vsec.

  • PDF

A Representativity Test on the Pyranometer Measurement of Surface Solar Insolation Through Satellite Observation

  • Yeom, Jong-Min;Han, Kyung-Soo;Park, Youn-Young;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.389-396
    • /
    • 2006
  • Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a $5\;km{\times}5\;km$ spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with $3{\times}3,\;5{\times}5,\;7{\times}7,\;9{\times}9,\;10{\times}10,\;11{\times}11,\;13{\times}pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account.

Electrical and Optical Properties of the Ga-doped ZnO Thin Films Deposited on PES (Polyethersulfon) Substrate (PES 기판위에 제작한 Ga-doped ZnO 박막의 전기적 및 광학적 특성)

  • Chung, Yeun-Gun;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1559-1563
    • /
    • 2011
  • We fabricated gallium doped ZnO (GZO, 5 wt% Ga) thin films on PES (polyethersulfon) substrate with RF magnetron sputtering and investigated optical and electrical properties for various substrate temperatures ($50{\sim}200^{\circ}C$). All GZO thin film has c-axis preferred orientation without reference to deposition conditions. As a result of AFM analysis, the GZO thin film deposited at $200^{\circ}C$ exhibited the lowest surface roughness of 0.196nm. The transmittance of GZO thin films were above 80% and Burstein-Moss effect was observed. In the analysis of Hall measurement, we confirmed that the GZO thin film deposited at $200^{\circ}C$ showed the lowest resistivity of $6.93{\times}10-4{\Omega}{\cdot}cm$ and the highest carrier concentration of $7.04{\times}1020/cm^3$.

Analysis of the Wireless Communication Environment in the Narrowed Residential Space for the Fire fighting Operation (소방작전을 위한 협소거주 공간의 무선 통신 환경 분석)

  • Park, Hyun-Ju;Hong, Sang-Beom;Choi, Hyuk-Jo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.242-248
    • /
    • 2017
  • Recently, Population has been concentrated in cities due to rapid economic growth. As a result, urban buildings are becoming more dense, high-rise, and diversified. The shape of these urban buildings increases the risk of fire, accidents and crime. The narrow living space has the characteristic of the unchanged floor. In case of a fire, the living space of the narrow residence is large in the damage because the smoke diffusion rate is fast. The radio wave transmittance and transmission distance of wireless communication used in fire fighting operations vary depending on the type of building materials and buildings. Therefore, this paper analyzes the building materials and structural characteristics of the narrow residential space for efficient fire fighting operations. We have developed a communication environment solution for a narrow residential space for the optimal fire fighting operation through the measurement of the radio wave transmittance and the transmission distance of the wireless communication.

Characteristics of Silicon Nitride Deposited Thin Films on IT Glass by RF Magnetron Sputtering Process (RF Magnetron Sputtering공정에 의해 IT유리에 적층시킨 Silicon Nitride 박막의 특성)

  • Son, Jeongil;Kim, Gwangsoo
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.169-175
    • /
    • 2020
  • Silicon nitride thin films are deposited by RF (13.57 MHz) magnetron sputtering process using a Si (99.999 %) target and with different ratios of Ar/N2 sputtering gas mixture. Corning G type glass is used as substrate. The vacuum atmosphere, RF source power, deposit time and temperature of substrate of the sputtering process are maintained consistently at 2 ~ 3 × 10-3 torr, 30 sccm, 100 watt, 20 min. and room temperature, respectively. Cross sectional views and surface morphology of the deposited thin films are observed by field emission scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy. The hardness values are determined by nano-indentation measurement. The thickness of the deposited films is approximately within the range of 88 nm ~ 200 nm. As the amount of N2 gas in the Ar:N2 gas mixture increases, the thickness of the films decreases. AFM observation reveals that film deposited at high Ar:N2 gas ratio and large amount of N2 gas has a very irregular surface morphology, even though it has a low RMS value. The hardness value of the deposited films made with ratio of Ar:N2=9:1 display the highest value. The XPS spectrum indicates that the deposited film is assigned to non-stoichiometric silicon nitride and the transmittance of the glass with deposited SiO2-SixNy thin film is satisfactory at 97 %.

Properties of indium tin oxide thin films prepared by ion assisted deposition at room temperature (상온 이온 보조 증착된 ITO 박막의 특성)

  • 이임영;최상대;이기암
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.204-208
    • /
    • 2002
  • We investigate the dependence of indium tin oxide (ITO) thin films on the mixing ratio of Ar:O$_2$ produced by an ion-gun and $O_2$ injected inside the divergence angle of the ion-beam to optimize their sheet resistance and transmittance. The substrate is placed outside the divergence angle, and the films are grown by ion mixing with ITO evaporated at room temperature. From the XRD measurement ITO films are found to be amorphous. ITO thin films show the highest transmittance of 85% at 3$\times$10$^{-5}$ Torr of 0$_2$ and Ae:O$_2$ ratio of 40:60, and the smallest sheet resistance of 132 $\Omega$/$\square$at 1$\times$10$^{-5}$ Torr of $O_2$ and As:O$_2$ ratio of 40:60.