DOI QR코드

DOI QR Code

A Representativity Test on the Pyranometer Measurement of Surface Solar Insolation Through Satellite Observation

  • Yeom, Jong-Min (Dept. of Environmental Atmospheric Science, Pukyung National University) ;
  • Han, Kyung-Soo (Dept. of Satellite Information Science, Pukyung National University) ;
  • Park, Youn-Young (Dept. of Satellite Information Science, Pukyung National University) ;
  • Kim, Young-Seup (Dept. of Satellite Information Science, Pukyung National University)
  • Published : 2006.10.31

Abstract

Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a $5\;km{\times}5\;km$ spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with $3{\times}3,\;5{\times}5,\;7{\times}7,\;9{\times}9,\;10{\times}10,\;11{\times}11,\;13{\times}pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account.

Keywords

References

  1. A. A. Lacis and Hansen, J. E., 1974. A parameterization for aborption of solar radiation in the earth's atmosphere. Journal of the Atmospheric science, 31: 118-133 https://doi.org/10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2
  2. A. Hammer, 2000. Anwendungsspezifische Solarstrahlungsinformationen aus Meteosat-Daten PhD thesis, University of Oldenburg, Germany (in German)
  3. C. Gautier, G. Diak, and S. Masse, 1980. A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. J. Appl. Meteor., 19: 1005-1012 https://doi.org/10.1175/1520-0450(1980)019<1005:ASPMTE>2.0.CO;2
  4. D. Chester, W. D., Robinson, and L. W. Uccellini, (1987): Optimized retrievals of precipitable water from the VAS 'Split window'. Journal of climate and applied Meteorology, 26: 1059-1066 https://doi.org/10.1175/1520-0450(1987)026<1059:OROPWF>2.0.CO;2
  5. F. Kasten, 1966. A new table and approximate formula for relative optical air mass. Archiv fuer Meteorologie, strahlungforschung, 14: 206-223
  6. H. Kawamura, (Ed.), 1995a. Yamase. Meteorological research note. Meteorological Society of Japan, 183: 153-179
  7. H. Kawamura, S. Tanahashi, and T. Takahashi, 1998. Estimation of insolation over the Pacific Ocean off the Sanriku Coast. Journal of Oceanography, 54: 457-464 https://doi.org/10.1007/BF02742448
  8. J. C., Klink and K. J. Dollhopf, 1986. An evaluation of satellite based insolation estimates for Ohio. J. climate Appl. Meteor., 25: 1741-1751 https://doi.org/10.1175/1520-0450(1986)025<1741:AEOSBI>2.0.CO;2
  9. J. D., Tarpley, 1979. Estimating incident solar radiation at the surface from geostationary satellite data. J. Appl. Meteor., 18: 1172-1181 https://doi.org/10.1175/1520-0450(1979)018<1172:EISRAT>2.0.CO;2
  10. Japan Meteorological Agency, New Geostationary meteorological satellite (Multi-functional Transport Satellite: MTSAT series. February 2005
  11. M. Endoh, Y. Kimura, and N. Yoshioka, 1987. On the accuracy of estimation of global solar radiation using the solar sensor installed on the JMA Marine Meteorological Buoy. J. Meteor. Res., 39: 213-217 (in Japanese with English abstract)
  12. M. Iqbal, 1983. An introduction to solar radiation. Canada, Academic Press (390pp)
  13. M. Macher, 1983. parameterization of solar irradiation under clear skies. M.A.Sc. Thesis, University of British Columbia, Vancouver, Canada (Cited from Iqbal, 1983)
  14. R. Frouin and B. Chertock, 1991. A technique for Global Monitoring of net Solar Irradiance at the Ocean Surface. Part I: Model. J. Appl. Meteor., 31: 1056-1066 https://doi.org/10.1175/1520-0450(1992)031<1056:ATFGMO>2.0.CO;2
  15. S. Fritz, P. Rao, and M. Weinstein, 1964. Satellite measurements of reflected solar energy and the energy received at the ground. J. Atmos. Sci., 21: 141-151 https://doi.org/10.1175/1520-0469(1964)021<0141:SMORSE>2.0.CO;2
  16. S. Kizu, 1995. A study on thermal response of ocean surface layer to solar radiation using satellite sensing. Doctoral Thesis. Tohoku University (pp. 100)
  17. S. Tanahashi, H. Kawamura, T. Matsuura, T. Takahashi, and H. Yusa, 2001. A system to distribute satellite incident solar radiation in real-time. Remote Sensing of Environment, 75: 412-422 https://doi.org/10.1016/S0034-4257(00)00183-8
  18. Z. Li and H. G. Leighton, 1991. Scene identification and its effect on cloud radiative forcing in the arctic. J. Geophys. Res., 96: 9175-9188 https://doi.org/10.1029/91JD00529