• Title/Summary/Keyword: transmit diversity

Search Result 289, Processing Time 0.025 seconds

Performance Analysis and Design of a WCDMA Mobile Station's Multi-path Searcher for Down-link with Multiple Transmit Antennas (다수의 송신 안테나가 있는 하향 링크에서 W-CDMA 단말기 다중 경로 검색기의 설계 및 성능분석)

  • Kim Young Ju;Won Seung Hwan;Kim En Ki;Lee Insung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.95-102
    • /
    • 2006
  • In this paper, we present the performance analysis and design of a multi-path searcher operating over Rayleigh fading channels when multiple transmit antennas are employed in the down-link of W-CDMA system. The simulation results for the receiver operating characteristics (ROC) for 1, 2, and 4 transmit antennas are presented to corroborate the theoretical analyses. We also propose a procedure to find the optimum parameters of double-dwell serial searcher according to the number of the multiple transmit antennas. Our analyses and simulations indicate that post-detection integration is not necessary when the number of transmit antennas is more than two. Finally, we found that increasing transmit diversity order does not necessarily improve the detection performance when the received pilot signal strength is relatively low. Therefore, this gives us a practical criterion on increasing transmit diversity order.

Reducing Transmit Power and Extending Network Lifetime via User Cooperation in the Next Generation Wireless Multihop Networks

  • Catovic, Amer;Tekinay, Sirin;Otsu, Toru
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.351-362
    • /
    • 2002
  • In this paper, we introduce a new approach to the minimum energy routing (MER) for next generation (NG) multihop wireless networks. We remove the widely used assumption of deterministic, distance-based channel model is removed, and analyze the potentials of MER within the context of the realistic channel model, accounting for shadowing and fading. Rather than adopting the conventional unrealistic assumption of perfect power control in a distributed multihop environment, we propose to exploit inherent spatial diversity of mobile terminals (MT) in NG multihop networks and to combat fading using transmit diversity. We propose the cooperation among MTs, whereby couples of MTs cooperate with each other in order to transmit the signal using two MTs as two transmit antennas. We provide the analytical framework for the performance analysis of this scheme in terms of the feasibility and achievable transmit power reduction. Our simulation result indicate that significant gains can be achieved in terms of the reduction of total transmit power and extension of network lifetime. These gains are in the range of 20-100% for the total transmit power, and 25-90% for the network lifetime, depending on the desired error probability. We show that our analytical results provide excellent match with our simulation results. The messaging load generated by our scheme is moderate, and can be further optimized. Our approach opens the way to a new family of channel-aware routing schemes for multihopNG wireless networks in fading channels. It is particularly suitable for delivering multicast/ geocast services in these networks.

Performance Analysis and Design of a Mobile Station′s Multi-path Searcher for W-CDMA Down-link with Multiple Transmit Antennas (W-CDMA 下向 링크에서 다수의 송신 안테나가 있는 경우 단말기 다중 경로 검색기의 설계 및 성능 분석)

  • Won Seung hwan;Kim Young ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10C
    • /
    • pp.1355-1362
    • /
    • 2004
  • In this paper, we present the performance analysis of a multi-path searcher operating over Rayleigh fading channels when multiple transmit antennas are employed in the down-link of W-CDMA system. The simulation results for the receiver operating characteristics (ROC) for 1, 2, and 4 transmit antennas are presented to corroborate the theoretical analyses. We also propose a procedure to find the optimum parameters of double-dwell serial searcher according to the number of the multiple transmit antennas. Our analyses and simulations indicate that post-detection integration is not necessary when the number of transmit antennas is more than two. Finally, we found that increasing transmit diversity order does not necessarily improve the detection performance when the received pilot signal strength is relatively low. Therefore, this gives us a practical criterion on increasing transmit diversity order.

Cooperative Diversity in a Spectrum Sharing Environment

  • Ban, Tea-Won;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.515-522
    • /
    • 2011
  • In this paper, we investigate cooperative diversity in a spectrum sharing environment where secondary users utilize primary users' spectrum only if the interference power received at the primary users is maintained below a predetermined level. The outage probability of a selective decode-and-forward (DF) based cooperative diversity scheme in the secondary network is derived to analyze the effects of spectrum sharing on cooperative diversity. Our analytical and simulation results show that the outage probability is saturated at a certain level of transmit power of secondary users due to interference regulation, and, hence, cooperative diversity gains are lost. Through asymptotic analysis, we also identify the critical value of transmit SNR beyond which the outage probability is saturated.

Performance Evaluation of Space-Time Codes and Channel Estimation in OFDM System for Wireless LANs (무선 LAN을 위한 OFDM 시스템에서 시공간 부호들의 성능 분석 및 채널 추정에 관한 연구)

  • Lee, Sang-Mun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8B
    • /
    • pp.760-770
    • /
    • 2002
  • Transmit diversity is an efficient diversity technique to improve performance and spectrum efficiency in wireless communication . Coding scheme designed for the transmit diversity is called space-time coding. In this paper, we propose a training structure to apply the transmit diversity to improve the performance of IEEE802.11a OFDM systems. Based on this training structure, we propose a channel estimation scheme using curve fitting. Also we compare and evaluate the performance of space-time codes. The performance of both diversity using space-time codes and channel estimation scheme is investigated by computer simulation in quasi-static 2-ray rayleigh fading environment.

Performance Analysis of a Double Opportunistic Cooperative Diversity System with Uniform Power Relay Selection (균일전력 릴레이 선택방식을 적용한 이중 기회전송 협동 다이버시티 시스템의 성능분석)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.15-21
    • /
    • 2011
  • Cooperative diversity system can be applied to an ad-hoc network for reduction of the power consumption, for expansion of the communication range, and for improving the system performance. In a selection relay cooperative diversity system which selects the maximal SNR(Signal-to-noise ratio) relay for transmitting the source information, the selected strong relay transmits continuously under slow fading channel, consequently it reduces the network lifetime. To overcome this defect, recently the uniform power relay selection has been studied to expand the network life time. We apply the uniform power relay selection to a DOT(Double opportunistic transmit) cooperative system that select the transmit relays, of which the SNR of the transmit relays exceed both of the source-relay and the relay-destination threshold. And the performance of the system is analytically derived. The performance comparisons are made among SC(Selection combining), MRC(Maximal ratio combining), and uniform power relay selection of the cooperative diversity system. We noticed that the performance of the uniform power relay selection is inferior to that of others. It is interpreted that the uniform transmit opportunity to the selected relays for extension of the network lifetime degrades the performance.

Pseudo-Orthogonal Space-Time Block Codes for MIMO-OFDM Systems over Frequency-Selective Channels

  • Lee, Heun-Chul;Park, Seok-Hwan;Lee, In-Kyu
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.340-347
    • /
    • 2007
  • This paper proposes a new class of Space-Time Block Codes, which is manipulated from the existing transmit diversity schemes. We analyze the performance and the receiver complexity of the proposed scheme and confirm that the new diversity scheme can yield performance gain over other existing four-transmit antenna cases. By relaxing the diversity criterion on code designs, the proposed space-time code provides a full transmission rate for four-transmit antennas and makes it possible to approach the open-loop Shannon channel capacity. Outage capacity and simulation results are used to show that substantial improvements in performance while maintaining a simple linear processing receiver structure are obtained in frequency selective channels.

  • PDF

Balanced Transmit Scheme in Decode-and-Forward Cooperative Relay Communication (Decode-and-Forward 협력 릴레이 통신에서의 Balanced 전송 기법)

  • Cho, Soo-Bum;Park, Sang-Kyu
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.35-42
    • /
    • 2011
  • Cooperative relay communication for wireless networks has been extensively studied due to its ability to mitigate fading effectively via spatial diversity. In this paper, we propose a balanced transmit scheme in cooperative relay communication with decode-and-forward DF) scheme. The proposed scheme selects the feedback bits to obtain the maximum cooperative diversity gain. The simulation results show that the proposed scheme improves the bit error rate BER) performance as compare with a conventional scheme.

Performance Evaluation of Channel Estimation using Trigonometric Polynomial Approximation in OFDM Systems with Transmit Diversity (송신 다이버시티를 가진 OFDM 시스템에서 삼각다항식 근사화를 이용한 채널 추정 기법의 성능평가)

  • 이상문;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.248-256
    • /
    • 2003
  • Space-time coding was designed for an efficient transmit diversity technique to improve performance of wireless communication. For the transmit diversity using space-time coding, the receiver requires to estimate channel parameters corresponding to each transmit antennas. In this paper, we propose an efficient channel estimation scheme based on trigonometric polynomial approximation in OFDM systems with transmit diversity using space-time coding. The proposed scheme is more efficient than the conventional scheme in terms of the computational complexity. For QAM modulation, when the size of FFH is 128, the conventional scheme with significant tap caching of 7 requires 9852 complex multiplications for TU, HT and BU channels. But the proposed scheme requires 2560, 7680 and 3584 complex multiplications for TU, HT and BU channels, respectively. Especially, for channels with smaller Doppler frequency and delay spreads, the proposed scheme has the improved BER performance and complexity. In addition, we evaluate the performance of maximum delay spread estimation in unknown channel. The performance of the proposed scheme is investigated by computer simulation in various multi-path fading environments.

Adaptive Channel-Matched Extended Alamouti Space-Time Code Exploiting Partial Feedback

  • Badic, Biljana;Rupp, Markus;Weinrichter, Hans
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.443-451
    • /
    • 2004
  • Since the publication of Alamouti's famous space-time block code, various quasi-orthogonal space-time block codes (QSTBC) for multi-input multi-output (MIMO) fading channels for more than two transmit antennas have been proposed. It has been shown that these codes cannot achieve full diversity at full rate. In this paper, we present a simple feedback scheme for rich scattering (flat Rayleigh fading) MIMO channels that improves the coding gain and diversity of a QSTBC for 2$^n$ (n=3, 4, ${\cdots}$) transmit antennas. The relevant channel state information is sent back from the receiver to the transmitter quantized to one or two bits per code block. In this way, signal transmission with an improved coding gain and diversity near to the maximum diversity order is achieved. Such high diversity can be exploited with either a maximum-likelihood receiver or low-complexity zero-forcing receiver.

  • PDF