• Title/Summary/Keyword: transmission time

Search Result 5,192, Processing Time 0.035 seconds

A Method of Data Transmission for Performance Improvement of Real Time GNSS Data Processing in Multi-Reference Network Station (다중 수신국 실시간 위성항법데이터 처리 성능향상을 위한 데이터 송·수신 설계)

  • Kim, Gue-Heon;Son, Minhyuk;Lee, Eunsung;Heo, Moon-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.39-44
    • /
    • 2012
  • This paper propose a transmission method for "Transportation system" that can decide precise position under wide area road traffic environment. For precise position detecting, central station collect multiple receiver station's satellite navigation data and generate correction information. In this process, we need efficient real time transmission method for satellite navigation message that has variable data size. We propose real time data transmission method. This real time transmission method offer efficient processing structure for multiple receiver station's satellite navigation message. This paper explains proposed real time transmission method and proofs this transmission method.

Performance analysis of packet transmission for a Signal Flow Graph based time-varying channel over a Wireless Network (무선 네트워크 time-varying 채널 상에서 Signal Flow Graph를 이용한 패킷 전송 성능 분석)

  • Kim, Sang-Yang;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.65-67
    • /
    • 2004
  • Change of state of Channel between two wireless terminals which is caused by noise and multiple environmental conditions for happens frequently from the Wireles Network. So, When it is like that planning a wireless network protocol or performance analysis, it follows to change of state of time-varying channel and packet the analysis against a transmission efficiency is necessary. In this paper, analyzes transmission time of a packet and a packet in a time-varying and packet based Wireless Network. To reflecte the feature of the time-varying channel, we use a Signal Flow Graph model. From the model the mean of transmission time and the mean of queue length of the packet are analyzed in terms of the packet distribution function, the packet transmission service time, and the PER of the time-varying channel.

  • PDF

Transmission Time Analysis of WAP Packet Considering RLP Layer in CDMA Wireless Channel (CDMA 무선채널에서 RLP 계층을 고려한 WAP 패킷의 전송시간 분석)

  • 문일영;노재성;조성준
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.57-60
    • /
    • 2001
  • This paper has studied the WAP packet transmission time, using WTP SAR algorithm. One method that is improved transfer ability, SAR fragmented WTP total message down from upper layer and then packet is transmitted to RLP frame time slot. In this paper, we analysis the transmission time of WAP packet with variable HLP layer size on the CDMA wireless channel for next generation systems as well as PCS, DCS. From the results, we can obtain the WAP packet transmission time and optimal WTP packet size.

  • PDF

Real-Time Transmission Method of Wireless Control Network using IEEE 802.15.4 Protocol (IEEE 802.15.4 기반의 무선 제어 망을 위한 실시간 전송기법에 대한 연구)

  • Lee, Jung-Il;Chol, Dong-Hyuck;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.178-180
    • /
    • 2007
  • In this paper, a real-time transmission algorithm based on IEEE 802.15.4 is proposed. The superframe of IEEE 802.15.4 is applied to the transmission method of real-time mixed data (periodic data, sporadic data, and non real-time message). The simulation results show the real-time performance of sporadic data is improved by using the proposed transmission algorithm.

  • PDF

Simulation of Voltage and Current Distributions in Transmission Lines Using State Variables and Exponential Approximation

  • Dan-Klang, Panuwat;Leelarasmee, Ekachai
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • A new method for simulating voltage and current distributions in transmission lines is described. It gives the time domain solution of the terminal voltage and current as well as their line distributions. This is achieved by treating voltage and current distributions as distributed state variables (DSVs) and turning the transmission line equation into an ordinary differential equation. Thus the transmission line is treated like other lumped dynamic components, such as capacitors. Using backward differentiation formulae for time discretization, the DSV transmission line component is converted to a simple time domain companion model, from which its local truncation error can be derived. As the voltage and current distributions get more complicated with time, a new piecewise exponential with controllable accuracy is invented. A segmentation algorithm is also devised so that the line is dynamically bisected to guarantee that the total piecewise exponential error is a small fraction of the local truncation error. Using this approach, the user can see the line voltage and current at any point and time freely without explicitly segmenting the line before starting the simulation.

  • PDF

RTP based Multicast Transmission Technique of Video Stream for Real-Time Multimedia Transmission (실시간 멀티미디어 전송을 위한 RTP 기반 비디오 스트림의 멀티캐스트 전송 기법)

  • 정규수;양종운;나인호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1104-1109
    • /
    • 2001
  • In this paper, we describe a method for real-time transmitting video streams based on RTP. In order to guarantee synchronous video streams, we propose a method to grasp network situations by analyzing end-to-end network traffic. In addition, we present an algorithm for satisfying QoS requirements of real-time multimedia transmission and maintaining continuity of transmission. It describes a buffering method for overcoming bandwidth limitations and an analyzing method based on RTCP for grasping network traffic situation to resolve the problem of real-time transmission of video streams.

  • PDF

Wireless Fieldbus for Networked Control Systems using LR-WPAN

  • Choi, Dong-Hyuk;Kim, Dong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.119-125
    • /
    • 2008
  • This paper examines the use of a wireless Fieldbus based on IEEE 802.15.4 MAC protocol. The superframe of IEEE 802.15.4 is applied to a transmission scheme of real-time mixed data. The transmission and bandwidth allocation scheme are proposed for real-time communication using a superframe. The proposed wireless Fieldbus protocol is able to transmit three types of data (periodic data, sporadic data, and non real-time messages), and guarantee realtime transmission simultaneously within a limited timeframe.

STF-OFDM Transmission Scheme with Frequency Diversity (주파수 다이버시티를 갖는 STF-OFDM 전송 기법)

  • 박상순;황호선;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.206-212
    • /
    • 2004
  • In this paper, we propose a STF(Space-Time-Frequency) coded OFDM(Orthogonal Frequency Division Multiplexing) transmission scheme as an attractive solution for high bit rate data transmission in a multipath fading environment. STBC(Space-Time Block Coding) has been proposed as a simple diversity scheme using two transmit antennas. Also ST-OFDM(Space-Time Block Coded OFDM) and SF-OFDM(Space-Frequency Block Coded OFDM) transmission scheme, that the STBC is applied to the OFDM, has been proposed. In this paper, we propose STF-OFDM transmission scheme that to coded in time, space and frequency domain. The STF-OFDM transmission scheme that we propose in this paper is the way to improve a performance of conventional ST-OFDM, by using frequency diversity.

A Dynamic Backoff Adjustment Method of IEEE 802.15.4 Networks for Real-Time Sporadic Data Transmission (비주기적 실시간 데이터 전송을 위한 IEEE 802.15.4 망의 동적 백오프 조정 기법에 대한 연구)

  • Lee, Jung-Il;Kim, Dong-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.318-325
    • /
    • 2008
  • In this paper, a dynamic backoff adjustment method of IEEE 802.15.4 is proposed for time-critical sporadic data in a noisy factory environment. For this, a superframe of IEEE 802.15.4 is applied to a real-time mixed data (periodic data, sporadic data, and non real-time message) transmission in factory communication systems. To guarantee a channel access of real-time sporadic(non-periodic) data, a transmission method using the dynamic backoff is applied to wireless control networks. For the real-time property, different initial BE, CW parameters are used for the dynamic backoff adjustment method. The simulat-ion results show an enhancement of the real-time performance of sporadic emergency data. The proposed method provides the channel access of real-time sporadic data efficiently, and guarantee real-time transmission simultaneously within a limite-d timeframe.

Estimation of Fault Location on a Transmission Line via Time-Frequency Domain Reflectometry (시간-주파수 반사파 계측 방법을 이용한 전송선로의 결함 위치 추정)

  • Choe TokSon;Kwak Ki-Seok;Yoon Tae Sung;Park Jin Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.521-530
    • /
    • 2005
  • In this paper, a new high resolution reflectometry scheme, time-frequency domain reflectometry(TFDR), isproposed to detect and estimate a fault in a transmission line. Traditional reflectometry methodologies have been achieved either in the time domain or in the frequency domain only. However, the TFDR can jump over the performance limits of the traditional reflectometry methodologies because the acquired signal is analyzed in time and frequency domain simultaneously. In the TFDR, the new reference signal and the novel TFDR algorithm are proposed for analyzing the acquired signal in the time-frequency domain. Because the reference signal of Gaussian envelop chirp signal is localized in the time and frequency domain simultaneously, it is suitable to the analysis in the time-frequency domain. In the proposed TFDR algorithm, the time-frequency distribution function and the normalized time-frequency cross correlation function are used to detect and estimate a fault in a transmission line. That algorithm is verified for real-world coaxial cables which are typical transmission line with different types of faults by the TFDR system composed of real instruments. The performance of the TFDR methodology is compared with that o( the commercial time domain reflectomeoy(TDR) experiments, so that concludes the TFDR methodology can detect and estimate the fault with smaller error than TDR methodology.