• Title/Summary/Keyword: transmission scheduling

Search Result 354, Processing Time 0.022 seconds

Multimedia Service Scheduling Algorithm for OFDMA Downlink (OFDMA 다운링크를 위한 멀티미디어 서비스 스케줄링 알고리즘)

  • Jang, Bong-Seog
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.9-16
    • /
    • 2006
  • This paper proposes a scheduling algorithm for efficiently processing multimedia pakcet services in OFDMA physical system of the future broadband wireless access networks. The scheduling algorithm uses wireless channel state estimation, and allocates transmission rates after deciding transmission ordering based on class and priority policy. As the result, the proposed scheduling algorithm offers maximum throughput and minimum jitter for realtime services, and fairness for non-realtime services. In simulation study, the proposed algorithm proves superior performances than traditional round robin method.

  • PDF

Markov Chain based Packet Scheduling in Wireless Heterogeneous Networks

  • Mansouri, Wahida Ali;Othman, Salwa Hamda;Asklany, Somia
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2022
  • Supporting real-time flows with delay and throughput constraints is an important challenge for future wireless networks. In this paper, we develop an optimal scheduling scheme to optimally choose the packets to transmit. The optimal transmission strategy is based on an observable Markov decision process. The novelty of the work focuses on a priority-based probabilistic packet scheduling strategy for efficient packet transmission. This helps in providing guaranteed services to real time traffic in Heterogeneous Wireless Networks. The proposed scheduling mechanism is able to optimize the desired performance. The proposed scheduler improves the overall end-to-end delay, decreases the packet loss ratio, and reduces blocking probability even in the case of congested network.

Utility Function-Based Scheduling in a Multi-Ship Network with Coordinated Multi-Point Transmission (협력적 다중 선박 네트워크에서 유틸리티 함수 기반의 스케줄링 기법)

  • Kim, Yunsung;Lee, Seong Ro;So, Jaewoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.538-545
    • /
    • 2014
  • This paper proposes a coordinated multi-point (CoMP) based dynamic transmission scheme in a downlink multi-ship network, where a central ship selects a ship in order to maximize the utility function. The proposed scheduling scheme dynamically decides to the usage of the coordinated multi transmissions and selects a user to be served for every frame, in order to the utility function on the basis of the throughput and fairness. In particular, the proposed utilify function based scheduling scheme aims to increase the quality of service of ships at the edge of cells. Under the proportional fair scheduling, the simulation results show that the proposed utility function-based scheduling improves the throughput of the ships at the cell edge with the little sacrifice of the system capacity.

On Transmission Scheduling with Tuning-Limited Transmitters in WDM Star Networks (파장 분할 방식 성형 통신망에서 조정 제약을 갖는 전송기를 이용한 전송 스케줄링)

  • Choi, Hong-Sik;Lee, Kyung-Joon;Kim, Jin
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.2
    • /
    • pp.129-140
    • /
    • 2002
  • In this paper, we consider the problem of packet transmission in a wavelength division multiplexed(WDM) optical network. Our network model assumes that receivers are fixed-tuned and transmitters are tunable such that optical lasers assigned to transmitters have limited access to the network bandwidth: hence each node must be equipped with multiple optical lasers and/or multiple optical filters in order to maintain a single-hop network. We first analyze scheduling all-to-all packet transmissions and present optimum scheduling for all-to-all packet transmissions. We then extend the analysis to the case of arbitrary traffic demands. We show that the scheduling with arbitrary traffic demand is NP-hard. A heuristic algorithm based on list scheduling is presented. The upper bound so obtained is compared with the lower bound and provides performance guarantees with arbitrary demands. The result are applicable to arbitrary tuning delay, arbitrary number of wavelength channels and optical lasers of arbitrary tuning ranges.

Radio Resource Management of CoMP System in HetNet under Power and Backhaul Constraints

  • Yu, Jia;Wu, Shaohua;Lin, Xiaodong;Zhang, Qinyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3876-3895
    • /
    • 2014
  • Recently, Heterogeneous Network (HetNet) with Coordinated Multi-Point (CoMP) scheme is introduced into Long Term Evolution-Advanced (LTE-A) systems to improve digital services for User Equipments (UEs), especially for cell-edge UEs. However, Radio Resource Management (RRM), including Resource Block (RB) scheduling and Power Allocation (PA), in this scenario becomes challenging, due to the intercell cooperation. In this paper, we investigate the RRM problem for downlink transmission of HetNet system with Joint Processing (JP) CoMP (both joint transmission and dynamic cell selection schemes), aiming at maximizing weighted sum data rate under the constraints of both transmission power and backhaul capacity. First, joint RB scheduling and PA problem is formulated as a constrained Mixed Integer Programming (MIP) which is NP-hard. To simplify the formulation problem, we decompose it into two problems of RB scheduling and PA. For RB scheduling, we propose an algorithm with less computational complexity to achieve a suboptimal solution. Then, according to the obtained scheduling results, we present an iterative Karush-Kuhn-Tucker (KKT) method to solve the PA problem. Extensive simulations are conducted to verify the effectiveness and efficiency of the proposed algorithms. Two kinds of JP CoMP schemes are compared with a non-CoMP greedy scheme (max capacity scheme). Simulation results prove that the CoMP schemes with the proposed RRM algorithms dramatically enhance data rate of cell-edge UEs, thereby improving UEs' fairness of data rate. Also, it is shown that the proposed PA algorithms can decrease power consumption of transmission antennas without loss of transmission performance.

Scheduling and Power Control Framework for Ad hoc Wireless Networks

  • Casaquite, Reizel;Yoon, Myung-Hyun;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.745-753
    • /
    • 2007
  • The wireless medium is known to be time-varying which could affect and result to a poor network's performance. As a solution, an opportunistic scheduling and power control algorithm based on IEEE 802.11 MAC protocol is proposed in this paper. The algorithm opportunistically exploits the channel condition for better network performance. Convex optimization problems were also formulated i.e. the overall transmission power of the system is minimized and the "net-utility" of he system is maximized. We have proven that an optimal transmission power vector may exist, satisfying the maximum power and SINR constraints at all receivers, thereby minimizing overall transmission power and maximizing net-utility of the system.

  • PDF

Energy-Efficient Scheduling with Delay Constraints in Time-Varying Uplink Channels

  • Kwon, Ho-Joong;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.28-37
    • /
    • 2008
  • In this paper, we investigate the problem of minimizing the average transmission power of users while guaranteeing the average delay constraints in time-varying uplink channels. We design a scheduler that selects a user for transmission and determines the transmission rate of the selected user based on the channel and backlog information of users. Since it requires prohibitively high computation complexity to determine an optimal scheduler for multi-user systems, we propose a low-complexity scheduling scheme that can achieve near-optimal performance. In this scheme, we reduce the complexity by decomposing the multiuser problem into multiple individual user problems. We arrange the probability of selecting each user such that it can be determined only by the information of the corresponding user and then optimize the transmission rate of each user independently. We solve the user problem by using a dynamic programming approach and analyze the upper and lower bounds of average transmission power and average delay, respectively. In addition, we investigate the effects of the user selection algorithm on the performance for different channel models. We show that a channel-adaptive user selection algorithm can improve the energy efficiency under uncorrelated channels but the gain is obtainable only for loose delay requirements in the case of correlated channels. Based on this, we propose a user selection algorithm that adapts itself to both the channel condition and the backlog level, which turns out to be energy-efficient over wide range of delay requirement regardless of the channel model.

On the Starvation Period of CDF-Based Scheduling over Markov Time-Varying Channels

  • Kim, Yoora
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.924-927
    • /
    • 2016
  • In this paper, we consider a cumulative distribution function (CDF)-based opportunistic scheduling for downlink transmission in a cellular network consisting of a base station and multiple mobile stations. We present a closed-form formula for the average starvation period of each mobile station (i.e., the length of the time interval between two successive scheduling points of a mobile station) over Markov time-varying channels. Based on our formula, we investigate the starvation period of the CDF-based scheduling for various system parameters.

Performance Improvement of Message Transmission over TCN(Train Communication Network) (TCN을 통한 메시지 전송 능력 향상에 관한 연구)

  • Cho Myung-ho;Moon Chong-chun;Park Jaehyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.720-726
    • /
    • 2004
  • The data transmission over MVB(Multifunction Vehicle Bus) of TCN(Train Communication Network) is divided into the periodic transmission phase and the sporadic transmission phase. TCN standard recommends the event-polling method as the message transfer in the sporadic phase. However, since the event-polling method does not use pre-scheduling to the priority of the messages, it is inefficient for the real-time systems. To schedule message transmission, a master node should know the priority of message to be transmitted by a slave node prior to the sporadic phase, but the existing TCN standard does not support any protocol for this. This paper proposes the slave frame bit-stuffing algorithm, with which a master node gets the necessary information for scheduling and includes the simulation results of the event-polling method and the proposed algorithm.

Packet Scheduling Algorithm Considering Maximum Delay Tolerance for HSDPA System

  • Hur, Soojung;Jakhongil, Narzullaev;Park, Yong-Wan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.311-318
    • /
    • 2013
  • In this paper, we consider a new packet scheduling algorithm for real-time traffic in the HSDPA system that has been introduced for the WCDMA system, in order to provide high transmission rates. The objective of the design is to meet the maximum tolerable delay and consider channel assignment based on the received SIR for real-time traffic users. The proposed scheduling algorithm shows that the users are ranked by the ratios of the bits in the buffer to the residual time for transmission as priority order; then the ranked users are assigned certain number of channels based on the SIR value table. The simulation results show that the proposed algorithm can provide a lower packet drop rate, and satisfy real time quality of service (QoS) requirements.