• Title/Summary/Keyword: transmission ratio

Search Result 1,800, Processing Time 0.039 seconds

The optical CT output signal characteristic according to temperature change (온도변화에 따른 광CT의 출력 특성)

  • Son, Hyun-Mok;Ahn, Mi-Kyoung;Heo, Soon-Young;Jeon, Jea-Il;Park, Won-Zoo;Lee, Kwang-Sik;Kim, Jung-Bae;Kim, Min-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.29-33
    • /
    • 2004
  • In this paper, we took the basic experiment in order to explore the characteristics of optical CT(optical current transformer) for measuring high current in a superhigh voltage condition using faraday effect and wrote that. We used the 1,310[nm] Laser Diode for the source of light and PIN-Photodiode for receiver. The transmission line of light was composed of the single-mode fiber of 30[m] which could maintain the state of polarization in the optical fiber. The range of current was from 400[A] to 1300[A]. In addition, the temperature ranged from $20[^{\circ}C}]\;to\;50[^{\circ}C]$. In a same experiment condition, a power magnitude increases in proportion as input current is increasing and temperature become low. The maximum ratio of error in temperature of $50[^{\circ}C]$ appears 0.15[%] and the 0.16[%], 1.24[%] and 0.07[%] is ratio of error in respectively $40[^{\circ}C],\;30[^{\circ}C],\;and\;20[^{\circ}C]$.

  • PDF

A Study on EM Wave Absorber for Electromagnetic Wave Environment of Wireless LAN at 5.2 GHz (5.2 GHz 무선 LAN의 전자파 환경 대책용 전파흡수체에 관한 연구)

  • Yoo, Gun-Suk;Choi, Dong-Soo;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • Recently, the wireless LAN system is rapidly growing because of its convenience of high speed communication. However, the wireless LAN systems at indoor places occur multi-propagation path by reflected waves from walls, ceilings, floors, and desks. Multipath problems cause transmission errors and degradation of communication speed. These problems can be solved by using EM wave absorbers. In this paper, we analyzed property of Graphite and derived the optimum ratio of Graphite: CPE to develop EM wave absorber for the wireless LAN system. First, we fabricated several samples in different composition ratios of Graphite and CPE, and then measured the reflection coefficient of each samples. Material constants of permittivity and permeability were calculated using the measured data and designed EM wave absorber. Secondly, the EM wave absorber was fabricated and tested on the base of the simulation data. As a result, it showed that the EM wave absorber in 1.7 mm thickness with the ratio of Graphite: CPE=50:50 wt.% has excellent absorption ability more than 27 dB at 5.2 GHz.

Thermal Properties and Microencapsulation of a Phosphate Flame Retardant with a Epoxy Resin (에폭시 수지를 이용한 인계 난연제의 마이크로캡슐화 및 열적 특성 연구)

  • Baek Kyung-Hyun;Lee Jun-Young;Hong Sang-Hyun;Kim Jung-Hyun
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.404-411
    • /
    • 2004
  • The microcapsules containing triphenyl phosphate (TPP), a flame retardant, were prepared by phase-inversion emulsification technique using the epoxy resin (Novolac type) with excellent physical properties and network structure. This microencapsulation process was adopted for the protection of TPP evaporation and wetting of polymer composite during the polymer blend processing. The TPP, epoxy resin and mixed surfactants were emulsified to oil in water (O/W) by the phase inversion technology and then conducted on the crosslinking of epoxy resin by in-situ polymerization. The capsule size and size distribution of TPP capsules was controlled by mixed surfactant ratio, concentration and TPP contents, The formation and thermal property of TPP capsules were measured by differential scanning calorimetry and thermogravimetric analysis. The morphology and size of TPP capsules were also investigated by scanning and transmission electron microscopies. As the surfactant concentration increased, the TPP capsules were more spherical and mono-dispersed at the same weight ratio of mixed surfactants (F127: SDBS).

A Practical TCP-friendly Rate Control Scheme for SVC Video Transport (SVC 비디오 전송을 위한 실용적인 TCP 친화적 전송률 제어 기법)

  • Seo, Kwang-Deok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.2
    • /
    • pp.114-124
    • /
    • 2009
  • In this paper, we propose a practical TCP friendly rate control scheme that considers the minimum channel bandwidth of the network when transporting SVC (scalable video coding) video over IP netowrks such as Internet. RTP and RTCP is mainly designed for use with UDP (User Datagram Protocol) for real-time video transport over the Internet. TCP-friendly rate control was proposed to satisfy the demands of multimedia applications while being reasonably fair when competing for bandwidth with conventional TCP applications. However the rate control model of the conventional TCP-friendly rate control scheme does not consider the minimum channel bandwidth of the network. Thus the estimated channel bandwidth by the conventional rate control model might be quite different from the real channel bandwidth when the packet loss ratio of the network is very large. In this paper, we propose a modified TCP-friendly rate control scheme that considers the minimum channel bandwidth of the network. Based on the modified TCP-friendly rate control, we assign the minimum channel bandwidth to the base layer bitstream of SVC video, and remaining available bandwidth is allocated to the enhancement layer of SVC video for the TCP friendly scalable video transmission. It is shown by simulations that the modified TCP-friendly rate control scheme can be effectively used for a wider range of controlled bit rates depending on the packet loss ratio than the conventional TCP-friendly control scheme. Furthermore, the effectiveness of the proposed scheme in terms of objective video quality is proved by comparing PSNR performance with the conventional scheme.

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts (Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성)

  • Kim, Hanna;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.281-295
    • /
    • 2021
  • In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.

Study on the Possibility of Recycling Crankcase Soot from Diesel Engine (디젤 엔진에서 생성된 크랭크케이스 수트의 재활용 가능성 연구)

  • Kim, Soo-yang;Choi, Jae-Hyuk;Rho, Bum-Seok;Kim, Junsoo;Kang, Jun;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.179-186
    • /
    • 2021
  • In this study, we attempted to comparatively analyze the structural characteristics of soot generated from marine engines to review the possibility of recycling crankcase soot by classifying it as exhaust soot and crankcase soot. The annealing procedure was performed in an argon gas atmosphere at 2,000℃ and 2,700℃, and Raman spectroscopy and High-Resolution Transmission Electron Microscopy(HRTEM) were used to analyze the structural properties of the samples. Furthermore, digital image processing techniques were utilized to quantitatively analyze the acquired HRTEM images. The Raman analysis demonstrated a relatively high G/D ratio in the exhaust soot and annealing conditions at 2,700℃. In the HRTEM images, both soot were able to identify similar forms of graphite nanostructures, but there were limitations in that they could not quantitatively derive differences in the degree of graphite depending on the type of soot and annealing temperature. Thus, digital image processing quantitatively analyzed the length and tortuosity of the fringe of the HRTEM image, which is consistent with the Raman analysis. This meant that the exhaust soot had a more graphite structure than the crankcase soot, and that annealing at a higher temperature improved the graphite structure. This study confirmed that both the crankcase soot and exhaust soot can be recycled as a graphite materials.

Efficient CT Image Denoising Using Deformable Convolutional AutoEncoder Model

  • Eon Seung, Seong;Seong Hyun, Han;Ji Hye, Heo;Dong Hoon, Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • Noise generated during the acquisition and transmission of CT images acts as a factor that degrades image quality. Therefore, noise removal to solve this problem is an important preprocessing process in image processing. In this paper, we remove noise by using a deformable convolutional autoencoder (DeCAE) model in which deformable convolution operation is applied instead of the existing convolution operation in the convolutional autoencoder (CAE) model of deep learning. Here, the deformable convolution operation can extract features of an image in a more flexible area than the conventional convolution operation. The proposed DeCAE model has the same encoder-decoder structure as the existing CAE model, but the encoder is composed of deformable convolutional layers and the decoder is composed of conventional convolutional layers for efficient noise removal. To evaluate the performance of the DeCAE model proposed in this paper, experiments were conducted on CT images corrupted by various noises, that is, Gaussian noise, impulse noise, and Poisson noise. As a result of the performance experiment, the DeCAE model has more qualitative and quantitative measures than the traditional filters, that is, the Mean filter, Median filter, Bilateral filter and NL-means method, as well as the existing CAE models, that is, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) and SSIM. (Structural Similarity Index Measure) showed excellent results.

Core-shell TiO2/Ag Nanoparticle Synthesis and Characterization for Conductive Paste (전도성 페이스트용 코어-쉘 TiO2/Ag 나노입자의 합성 및 특성 연구)

  • Sang-Bo, Sim;Jong-Dae, Han
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.36-44
    • /
    • 2023
  • Core-shell TiO2/Ag nanoparticles were synthesized by a modified sol-gel process and the reverse micelle method using acetoxime as a reducing agent in water/dodecylbenzenesulfonic acid (DDBA)/cyclohexane. The structure, shape, and size of the TiO2/Ag nanoparticles were investigated using X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), and thermogravimetric analysis (TGA). The size of TiO2/Ag nanoparticles could be controlled by changing the [water]/[DDBA] molar ratio values. The size and the polydispersity of TiO2/Ag nanoparticles increased when the [water]/[DDBA] molar ratio rose. The resultant Ag nanoparticles over the anatase crystal TiO2 nanoparticles exhibited a strong surface plasmon resonance (SPR) peak at about 430 nm. The SPR peak shifted to the red side with the increase in nanoparticle size. Conductive pastes with 70 wt% TiO2/Ag nanoparticles were prepared, and the pastes were coated on the PET films using a screen-printing method. The printed paste films of the TiO2/Ag nanoparticles demonstrated greater surface resistance than conventional Ag paste in the range of 405~630 μΩ/sq.

Survey on the Safety Accidents During the Repairing of Agricultural Machinery (농업기계 수리시 안전사고 실태분석)

  • Han, H.G.;Lee, W.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.5 no.1
    • /
    • pp.64-76
    • /
    • 2003
  • This study was conducted in order to find out the basic data and informations for the accidents for repairing of agricultural machines. This study was summarized as fellows : 1. Among the total repair work, the ratio of repair accident was 68.9% and the accident ratio with power tiller, tractor, and combine was 84.8%. The accident occurred frequently in April to May and September to October because of frequent use of machines during this months. The accidents occurred often of ten to eleven and two to three afternoon in a day. 2. The 36.3% of the accident types was farming machines and the 60.4% of the accident occurred in yard of repair shop. The 34.4% of accident was caused by people, 26.2% by machines, 24.9% by environmental factors, and 14.5% by others. 3. In accident damage, human damage was 98.4% and economic damage was 43.6%. There was only 40.2% in having agricultural machinery insurance and 22.5% of research applicant answered that they would not have insurance in the future. 4. The 58.2% of the injured parts occurred in fingers, hands, wrists, or arms and the 74.4% of the damage types were bruise, prick or abrasion. The damaged parts of machinery were belt of power transmission device, chains, sharpened knives, narrow mechanism or cultivating knives for rotary. 5. The average days of medical treatment for casualty was 15.5 days and the average expense of medical treatment per person was 189,200 won. The days of temporary rest and the economic damage per person due to accident were 12.8 days and 469,300 won.

Rock Bolt Integrity Assessment in Time-Frequency Domain : In-situ Application at Hard Rock Site (유도파를 이용한 시간-주파수 영역 해석을 통한 록볼트 건전도 실험의 경암지반 현장 적용성 평가)

  • Lee, In-Mo;Han, Shin-In;Min, Bok-Ki;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.5-12
    • /
    • 2009
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these structures. The purpose of this study is the evaluation of rock bolt integrity using wavelet transforms of the guided ultrasonic waves by using transmission test in the field. After several rock bolts with various defect ratios are embedded into a large scale concrete block and rock mass, guided waves are generated by a piezo disk element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the time-frequency domain using the wavelet transform based on a Gabor wavelet. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with an increase in the defect ratio. The suitable curing time for the evergy velocity analysis is proposed by the laboratory test, and in-situ tests are performed in two tunnelling sites to verify the applicability of rock bolt integrity tests performed after proposed curing time. This study proves that time-frequency domain analysis is an effective tool for the evaluation of the rock bolt integrity.